IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v240y2022ics0360544221030450.html
   My bibliography  Save this article

Gasification characteristics and thermodynamic analysis of ultra-lean oxygen oxidized lignite residues

Author

Listed:
  • Chen, Liangzhou
  • Qi, Xuyao
  • Zhang, Yabo
  • Rao, Yuxuan
  • Wang, Tao

Abstract

Recent developments in the in-situ transformation of coal resources have heightened the possibility of exploring the oxidized coal regasification in coalfield fires. For further understanding the regasification characteristics of oxidized lignite residues in coalfield fire, Shengli lignite was selected for conducting ultra-lean oxygen pre-oxidation under different isothermal temperatures and CO2 regasification experiments. Fourier transform infrared spectroscopy results indicate that higher temperature leads to the increase of aromatic hydrocarbon and reduction of aliphatic hydrocarbon side chains on the coal structure. It is found that the pre-oxidation of under 1% oxygen concentration and 300 °C will increase the specific surface area and pore volume, which would be beneficial for the following regasification. The analysis of gasification parameters suggests that the gasification quality and performance of lignite residues decline with the increasing oxygen concentration and rising isothermal temperatures in pre-oxidation. The kinetic analysis demonstrates that when the oxygen concentration ranges from 1% to 5%, the activation energy of gasification increases by 16.744 kJ/mol. The findings suggest that the lignite pre-oxidation under ultra-lean oxygen conditions will inevitably increase the activation energy of CO2 gasification, which causes the coal more difficult to be utilized effectively.

Suggested Citation

  • Chen, Liangzhou & Qi, Xuyao & Zhang, Yabo & Rao, Yuxuan & Wang, Tao, 2022. "Gasification characteristics and thermodynamic analysis of ultra-lean oxygen oxidized lignite residues," Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030450
    DOI: 10.1016/j.energy.2021.122796
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221030450
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122796?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Irfan, Muhammad F. & Usman, Muhammad R. & Kusakabe, K., 2011. "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review," Energy, Elsevier, vol. 36(1), pages 12-40.
    2. Deng, Jinchang & Zhou, Fubao & Shi, Bobo & Torero, José L. & Qi, Haining & Liu, Peng & Ge, Shaokun & Wang, Zhiyu & Chen, Chen, 2020. "Waste heat recovery, utilization and evaluation of coalfield fire applying heat pipe combined thermoelectric generator in Xinjiang, China," Energy, Elsevier, vol. 207(C).
    3. Krzemień, Alicja, 2019. "Fire risk prevention in underground coal gasification (UCG) within active mines: Temperature forecast by means of MARS models," Energy, Elsevier, vol. 170(C), pages 777-790.
    4. Xie, Kechang & Li, Wenying & Zhao, Wei, 2010. "Coal chemical industry and its sustainable development in China," Energy, Elsevier, vol. 35(11), pages 4349-4355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Kaiwei & Cui, Meiqin & Zhang, Bo & Li, Yongjun & Geng, Ping & Fu, Peng & Yi, Weiming & Zhang, Yan, 2023. "Some new insights into the kinetic compensation effect in different diffusion-controlled domain for char-CO2 gasification," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Hong & Zhou, Hao & Liu, Kailong & Gao, Xin & Li, Xingang, 2021. "Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production," Energy, Elsevier, vol. 218(C).
    2. Ján Kačur & Marek Laciak & Milan Durdán & Patrik Flegner, 2023. "Investigation of Underground Coal Gasification in Laboratory Conditions: A Review of Recent Research," Energies, MDPI, vol. 16(17), pages 1-55, August.
    3. Im-orb, Karittha & Simasatitkul, Lida & Arpornwichanop, Amornchai, 2016. "Techno-economic analysis of the biomass gasification and Fischer–Tropsch integrated process with off-gas recirculation," Energy, Elsevier, vol. 94(C), pages 483-496.
    4. Yang Guo & Liqun Peng & Jinping Tian & Denise L. Mauzerall, 2023. "Deploying green hydrogen to decarbonize China’s coal chemical sector," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Prabowo, Bayu & Aziz, Muhammad & Umeki, Kentaro & Susanto, Herri & Yan, Mi & Yoshikawa, Kunio, 2015. "CO2-recycling biomass gasification system for highly efficient and carbon-negative power generation," Applied Energy, Elsevier, vol. 158(C), pages 97-106.
    6. Zhao, Jingyu & Deng, Jun & Wang, Tao & Song, Jiajia & Zhang, Yanni & Shu, Chi-Min & Zeng, Qiang, 2019. "Assessing the effectiveness of a high-temperature-programmed experimental system for simulating the spontaneous combustion properties of bituminous coal through thermokinetic analysis of four oxidatio," Energy, Elsevier, vol. 169(C), pages 587-596.
    7. Samuel C. Bayham & Andrew Tong & Mandar Kathe & Liang-Shih Fan, 2016. "Chemical looping technology for energy and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(2), pages 216-241, March.
    8. Rashwan, Tarek L. & Zanoni, Marco A.B. & Wang, Jiahao & Torero, José L. & Gerhard, Jason I., 2023. "Elucidating the characteristic energy balance evolution in applied smouldering systems," Energy, Elsevier, vol. 273(C).
    9. Salem, Ahmed M. & Abd Elbar, Ayman Refat, 2023. "The feasibility and performance of using producer gas as a gasifying medium," Energy, Elsevier, vol. 283(C).
    10. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    11. Ziębik, Andrzej & Malik, Tomasz & Liszka, Marcin, 2015. "Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification," Energy, Elsevier, vol. 92(P2), pages 179-188.
    12. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    13. Zhao, Jun & Mangi, Hassan Nasir & Zhang, Zhenyue & Chi, Ru'an & Zhang, Haochen & Xian, Mengyu & Liu, Hong & Zuo, Haibin & Wang, Guangwei & Xu, Zhigao & Wu, Ming, 2022. "The structural characteristics and gasification performance of cokes of modified coal extracted from the mixture of low-rank coal and biomass," Energy, Elsevier, vol. 258(C).
    14. Yi, Qun & Gong, Min-Hui & Huang, Yi & Feng, Jie & Hao, Yan-Hong & Zhang, Ji-Long & Li, Wen-Ying, 2016. "Process development of coke oven gas to methanol integrated with CO2 recycle for satisfactory techno-economic performance," Energy, Elsevier, vol. 112(C), pages 618-628.
    15. Bin Xu, 2022. "How to Efficiently Reduce the Carbon Intensity of the Heavy Industry in China? Using Quantile Regression Approach," IJERPH, MDPI, vol. 19(19), pages 1-24, October.
    16. Yao, Xiwen & Liu, Qinghua & Kang, Zijian & An, Zhixing & Zhou, Haodong & Xu, Kaili, 2023. "Quantitative study on thermal conversion behaviours and gas emission properties of biomass in nitrogen and in CO2/N2 mixtures by TGA/DTG and a fixed-bed tube furnace," Energy, Elsevier, vol. 270(C).
    17. Zhou, Wenji & Zhu, Bing & Chen, Dingjiang & Zhao, Fangxian & Fei, Weiyang, 2011. "Technoeconomic assessment of China’s indirect coal liquefaction projects with different CO2 capture alternatives," Energy, Elsevier, vol. 36(11), pages 6559-6566.
    18. Hong, Yong C. & Lee, Sang J. & Shin, Dong H. & Kim, Ye J. & Lee, Bong J. & Cho, Seong Y. & Chang, Han S., 2012. "Syngas production from gasification of brown coal in a microwave torch plasma," Energy, Elsevier, vol. 47(1), pages 36-40.
    19. Yuan, Rong & Behrens, Paul & Rodrigues, João F.D., 2018. "The evolution of inter-sectoral linkages in China's energy-related CO2 emissions from 1997 to 2012," Energy Economics, Elsevier, vol. 69(C), pages 404-417.
    20. Mingquan Wang & Lingyun Zhang & Xin Su & Yang Lei & Qun Shen & Wei Wei & Maohua Wang, 2019. "Assessing the technology impact for industry carbon density reduction in China based on C3IAM-Tice," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(3), pages 1455-1468, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:240:y:2022:i:c:s0360544221030450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.