IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3768-d820322.html
   My bibliography  Save this article

A Robust Kalman Filter-Based Approach for SoC Estimation of Lithium-Ion Batteries in Smart Homes

Author

Listed:
  • Omid Rezaei

    (Electronic Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada
    School of Electrical Engineering, Iran University of Science and Technology (IUST), Tehran 13114-16846, Iran)

  • Reza Habibifar

    (School of Electrical Engineering, Sharif University of Technology (SUT), Tehran 14588-89694, Iran)

  • Zhanle Wang

    (Electronic Systems Engineering, University of Regina, Regina, SK S4S 0A2, Canada)

Abstract

Battery energy systems are playing significant roles in smart homes, e.g., absorbing the uncertainty of solar energy from root-top photovoltaic, supplying energy during a power outage, and responding to dynamic electricity prices. For the safe and economic operation of batteries, an optimal battery-management system (BMS) is required. One of the most important features of a BMS is state-of-charge ( SoC ) estimation. This article presents a robust central-difference Kalman filter (CDKF) method for the SoC estimation of on-site lithium-ion batteries in smart homes. The state-space equations of the battery are derived based on the equivalent circuit model. The battery model includes two RC subnetworks to represent the fast and slow transient responses of the terminal voltage. Moreover, the model includes the nonlinear relationship between the open-circuit voltage ( OCV ) and SoC . The proposed robust CDKF method can accurately estimate the SoC in the presence of the time-varying model uncertainties and measurement noises. Being able to cope with model uncertainties and measurement noises is essential, since they can lead to inaccurate SoC estimations. An experiment test bench is developed, and various experiments are conducted to extract the battery model parameters. The experimental results show that the proposed method can more accurately estimate SoC compared with other Kalman filter-based methods. The proposed method can be used in optimal BMSs to promote battery performance and decrease battery operational costs in smart homes.

Suggested Citation

  • Omid Rezaei & Reza Habibifar & Zhanle Wang, 2022. "A Robust Kalman Filter-Based Approach for SoC Estimation of Lithium-Ion Batteries in Smart Homes," Energies, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3768-:d:820322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3768/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3768/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    2. Zhongwei Zhang & Dan Zhou & Neng Xiong & Qiao Zhu, 2021. "Non-Fragile H ∞ Nonlinear Observer for State of Charge Estimation of Lithium-Ion Battery Based on a Fractional-Order Model," Energies, MDPI, vol. 14(16), pages 1-17, August.
    3. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    4. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinghao Zhang & Yan Huang & Zhaowei Zhang & Huipin Lin & Yu Zeng & Mingyu Gao, 2022. "A Hybrid Method for State-of-Charge Estimation for Lithium-Ion Batteries Using a Long Short-Term Memory Network Combined with Attention and a Kalman Filter," Energies, MDPI, vol. 15(18), pages 1-26, September.
    2. Qi Wang & Tian Gao & Xingcan Li, 2022. "SOC Estimation of Lithium-Ion Battery Based on Equivalent Circuit Model with Variable Parameters," Energies, MDPI, vol. 15(16), pages 1-15, August.
    3. Mahyar Alinejad & Omid Rezaei & Reza Habibifar & Mahdi Azimian, 2022. "A Charge/Discharge Plan for Electric Vehicles in an Intelligent Parking Lot Considering Destructive Random Decisions, and V2G and V2V Energy Transfer Modes," Sustainability, MDPI, vol. 14(19), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuqing Li & Chuankun Ju & Jianliang Li & Ri Fang & Zhifei Tao & Bo Li & Tingting Zhang, 2021. "State-of-Charge Estimation of Lithium-Ion Batteries in the Battery Degradation Process Based on Recurrent Neural Network," Energies, MDPI, vol. 14(2), pages 1-21, January.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Feng, Xiong & Chen, Junxiong & Zhang, Zhongwei & Miao, Shuwen & Zhu, Qiao, 2021. "State-of-charge estimation of lithium-ion battery based on clockwork recurrent neural network," Energy, Elsevier, vol. 236(C).
    4. Bian, Chong & Duan, Zhiyu & Hao, Yaqian & Yang, Shunkun & Feng, Junlan, 2024. "Exploring large language model for generic and robust state-of-charge estimation of Li-ion batteries: A mixed prompt learning method," Energy, Elsevier, vol. 302(C).
    5. Xinyu Gu & KW See & Yunpeng Wang & Liang Zhao & Wenwen Pu, 2021. "The Sliding Window and SHAP Theory—An Improved System with a Long Short-Term Memory Network Model for State of Charge Prediction in Electric Vehicle Application," Energies, MDPI, vol. 14(12), pages 1-15, June.
    6. Zhang, Kai & Bai, Dongxin & Li, Yong & Song, Ke & Zheng, Bailin & Yang, Fuqian, 2024. "Robust state-of-charge estimator for lithium-ion batteries enabled by a physics-driven dual-stage attention mechanism," Applied Energy, Elsevier, vol. 359(C).
    7. Ming Zhang & Dongfang Yang & Jiaxuan Du & Hanlei Sun & Liwei Li & Licheng Wang & Kai Wang, 2023. "A Review of SOH Prediction of Li-Ion Batteries Based on Data-Driven Algorithms," Energies, MDPI, vol. 16(7), pages 1-28, March.
    8. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    9. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    10. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2024. "Wind power forecasting: A temporal domain generalization approach incorporating hybrid model and adversarial relationship-based training," Applied Energy, Elsevier, vol. 355(C).
    11. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    12. Pang, Haidong & Yang, Zunxian & Lv, Jun & Yan, Wenhuan & Guo, Tailiang, 2014. "Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries," Energy, Elsevier, vol. 69(C), pages 392-398.
    13. Li, Yue & Chattopadhyay, Pritthi & Xiong, Sihan & Ray, Asok & Rahn, Christopher D., 2016. "Dynamic data-driven and model-based recursive analysis for estimation of battery state-of-charge," Applied Energy, Elsevier, vol. 184(C), pages 266-275.
    14. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    15. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    16. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    17. Li, Hao & Fu, Lijun & Long, Xinlin & Liu, Lang & Zeng, Ziqing, 2024. "A hybrid deep learning model for lithium-ion batteries state of charge estimation based on quantile regression and attention," Energy, Elsevier, vol. 294(C).
    18. Quan Ouyang & Rui Ma & Zhaoxiang Wu & Guotuan Xu & Zhisheng Wang, 2020. "Adaptive Square-Root Unscented Kalman Filter-Based State-of-Charge Estimation for Lithium-Ion Batteries with Model Parameter Online Identification," Energies, MDPI, vol. 13(18), pages 1-14, September.
    19. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    20. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3768-:d:820322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.