IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p244-d714513.html
   My bibliography  Save this article

An Analysis of Electromagnetic Disturbances from an Electric Vehicle Charging Station

Author

Listed:
  • Paweł Mazurek

    (Department of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland)

  • Aleksander Chudy

    (Department of Electrical Engineering and Electrotechnologies, Lublin University of Technology, Nadbystrzycka 38 A, 20-618 Lublin, Poland)

Abstract

The electric vehicles (EVs) could potentially have a significant impact on power quality parameters and distribution networks as they are non-linear loads and their charging might result in tremendous power demand. When connected to the utility grid, a large number of EV charging stations from different manufacturers might create significant harmonic current emissions, impact the voltage profile, and eventually affect the power quality. Nevertheless, practical examples of disturbances from charging stations have not been made public. This paper aims to clarify the characteristics of conductive disturbances and levels of current harmonics generated by charging station and their severity on the quality of electric energy. The analysis was based on tests of a prototype station of an EV charging station integrated with a LED street light. The tests concern the determination of current harmonics and the values of conductive electromagnetic disturbances in the 150 kHz–30 MHz range. The test results of the prototype charger with observed exceedances of current harmonics (25th–39th range) and conducted interference exceedances are comprehensively described. After applying filtering circuits to the final version of the station, retesting in an accredited laboratory showed qualitative compliance.

Suggested Citation

  • Paweł Mazurek & Aleksander Chudy, 2021. "An Analysis of Electromagnetic Disturbances from an Electric Vehicle Charging Station," Energies, MDPI, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:244-:d:714513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sylvester Johansson & Jonas Persson & Stavros Lazarou & Andreas Theocharis, 2019. "Investigation of the Impact of Large-Scale Integration of Electric Vehicles for a Swedish Distribution Network," Energies, MDPI, vol. 12(24), pages 1-22, December.
    2. Wei Li & Zhiyun Lin & Kai Cai & Hanyun Zhou & Gangfeng Yan, 2019. "Multi-Objective Optimal Charging Control of Plug-In Hybrid Electric Vehicles in Power Distribution Systems," Energies, MDPI, vol. 12(13), pages 1-19, July.
    3. Karol Tucki & Olga Orynycz & Antoni Świć & Mateusz Mitoraj-Wojtanek, 2019. "The Development of Electromobility in Poland and EU States as a Tool for Management of CO 2 Emissions," Energies, MDPI, vol. 12(15), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksander Chudy & Piotr Hołyszko & Paweł Mazurek, 2022. "Fast Charging of an Electric Bus Fleet and Its Impact on the Power Quality Based on On-Site Measurements," Energies, MDPI, vol. 15(15), pages 1-16, July.
    2. Andrea Mariscotti & Leonardo Sandrolini & Mattia Simonazzi, 2022. "Supraharmonic Emissions from DC Grid Connected Wireless Power Transfer Converters," Energies, MDPI, vol. 15(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. István Árpád & Judit T. Kiss & Gábor Bellér & Dénes Kocsis, 2021. "Sustainability Investigation of Vehicles’ CO 2 Emission in Hungary," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    2. Fachrizal, Reza & Shepero, Mahmoud & Åberg, Magnus & Munkhammar, Joakim, 2022. "Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance," Applied Energy, Elsevier, vol. 307(C).
    3. Bruno Pinto & Filipe Barata & Constantino Soares & Carla Viveiros, 2020. "Fleet Transition from Combustion to Electric Vehicles: A Case Study in a Portuguese Business Campus," Energies, MDPI, vol. 13(5), pages 1-24, March.
    4. Olga Orynycz & Karol Tucki & Andrzej Wasiak & Robert Sobótka & Arkadiusz Gola, 2019. "Evaluation of the Brake’s Performance Dependence Upon Technical Condition of Car Tires as a Factor of Road Safety Management," Energies, MDPI, vol. 13(1), pages 1-19, December.
    5. Peng, Ruoqing & Tang, Justin Hayse Chiwing G. & Yang, Xiong & Meng, Meng & Zhang, Jie & Zhuge, Chengxiang, 2024. "Investigating the factors influencing the electric vehicle market share: A comparative study of the European Union and United States," Applied Energy, Elsevier, vol. 355(C).
    6. Magdalena Tutak & Jarosław Brodny, 2019. "Forecasting Methane Emissions from Hard Coal Mines Including the Methane Drainage Process," Energies, MDPI, vol. 12(20), pages 1-28, October.
    7. Sylvester Johansson & Jonas Persson & Stavros Lazarou & Andreas Theocharis, 2019. "Investigation of the Impact of Large-Scale Integration of Electric Vehicles for a Swedish Distribution Network," Energies, MDPI, vol. 12(24), pages 1-22, December.
    8. Wojciech Lewicki & Wojciech Drozdz, 2021. "Electromobility and its Development Prospects in the Context of Industry 4.0: A Comparative Study of Poland and the European Union," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 135-144.
    9. Wojciech Lewicki & Wojciech Drozdz & Piotr Wroblewski & Krzysztof Zarna, 2021. "The Road to Electromobility in Poland: Consumer Attitude Assessment," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 28-39.
    10. Anatole Desreveaux & Alain Bouscayrol & Elodie Castex & Rochdi Trigui & Eric Hittinger & Gabriel-Mihai Sirbu, 2020. "Annual Variation in Energy Consumption of an Electric Vehicle Used for Commuting," Energies, MDPI, vol. 13(18), pages 1-15, September.
    11. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    12. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    13. Paweł Ziemba, 2020. "Multi-Criteria Stochastic Selection of Electric Vehicles for the Sustainable Development of Local Government and State Administration Units in Poland," Energies, MDPI, vol. 13(23), pages 1-19, November.
    14. Strobel, Leo & Schlund, Jonas & Pruckner, Marco, 2022. "Joint analysis of regional and national power system impacts of electric vehicles—A case study for Germany on the county level in 2030," Applied Energy, Elsevier, vol. 315(C).
    15. Kovárník Richard & Staňková Michaela, 2023. "Efficiency of the Automotive Industry in the Visegrad Group," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 14(1), pages 12-23, January.
    16. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    17. Marcin Połom & Paweł Wiśniewski, 2021. "Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    18. Richnák Patrik & Gubová Klaudia & Fabianová Janka, 2020. "The Application of Total Cost of Ownership Method to Automotive Industry," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 11(2), pages 100-109, November.
    19. Karol Tucki & Olga Orynycz & Mateusz Mitoraj-Wojtanek, 2020. "Perspectives for Mitigation of CO 2 Emission due to Development of Electromobility in Several Countries," Energies, MDPI, vol. 13(16), pages 1-24, August.
    20. Łukasz Kuźmiński & Arkadiusz Halama & Michał Nadolny & Joanna Dynowska, 2023. "Economic Instruments and the Vision of Prosumer Energy in Poland. Analysis of the Potential Impacts of the “My Electricity” Program," Energies, MDPI, vol. 16(4), pages 1-12, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:244-:d:714513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.