IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2021i1p163-d712187.html
   My bibliography  Save this article

Distributed Electric Vehicle Charging Scheduling with Transactive Energy Management

Author

Listed:
  • Zhouquan Wu

    (Department of Electrical and Computer Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA)

  • Bo Chen

    (Department of Electrical and Computer Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
    Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA)

Abstract

A distributed electric vehicle (EV) charging scheduling strategy with transactive energy (TE) management is presented in this paper to deal with technical issues in distribution network operation and discuss the economic benefits of EV charging. At an individual EV level, EV owners propose bids to actively participate in the distribution system operation. At the node level, an electric vehicle aggregator (EVA) optimally allocates the available charging power to meet EV charging requirements and cost benefits. At the distribution network level, a distribution system operator (DSO) integrates an electricity price market clearing mechanism with the optimal power flow (OPF) technique to ensure the reliability of the distribution network. Moreover, a distributed algorithm is discussed for solving the EV charging problem with transactive energy management (TEM). The clearing electricity price is achieved through a negotiation process between the DSO and EVAs using the alternating direction method of multipliers (ADMM). The presented EV charging scheduling with TEM is tested on a modified IEEE 33-bus distribution network scenario with 230 EV charging loads. The simulation results demonstrate the effectiveness of the TE-based EV charging scheduling system.

Suggested Citation

  • Zhouquan Wu & Bo Chen, 2021. "Distributed Electric Vehicle Charging Scheduling with Transactive Energy Management," Energies, MDPI, vol. 15(1), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:163-:d:712187
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/1/163/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/1/163/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chong Cao & Zhouquan Wu & Bo Chen, 2020. "Electric Vehicle–Grid Integration with Voltage Regulation in Radial Distribution Networks," Energies, MDPI, vol. 13(7), pages 1-18, April.
    2. C. Birk Jones & Matthew Lave & William Vining & Brooke Marshall Garcia, 2021. "Uncontrolled Electric Vehicle Charging Impacts on Distribution Electric Power Systems with Primarily Residential, Commercial or Industrial Loads," Energies, MDPI, vol. 14(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed El-Hendawi & Zhanle Wang & Xiaoyue Liu, 2022. "Centralized and Distributed Optimization for Vehicle-to-Grid Applications in Frequency Regulation," Energies, MDPI, vol. 15(12), pages 1-22, June.
    2. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    2. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    3. Junaid Bin Fakhrul Islam & Mir Toufikur Rahman & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Hazlie Mokhlis & Mohamadariff Othman & Tengku Faiz Tengku Mohmed Noor Izam & Hasmaini Mohamad & Moham, 2023. "Multi-Objective-Based Charging and Discharging Coordination of Plug-in Electric Vehicle Integrating Capacitor and OLTC," Energies, MDPI, vol. 16(5), pages 1-20, February.
    4. Jay Johnson & Timothy Berg & Benjamin Anderson & Brian Wright, 2022. "Review of Electric Vehicle Charger Cybersecurity Vulnerabilities, Potential Impacts, and Defenses," Energies, MDPI, vol. 15(11), pages 1-26, May.
    5. Virginia Negri & Alessandro Mingotti & Roberto Tinarelli & Lorenzo Peretto, 2023. "Comparison of Algorithms for the AI-Based Fault Diagnostic of Cable Joints in MV Networks," Energies, MDPI, vol. 16(1), pages 1-20, January.
    6. Zhouquan Wu & Pradeep Krishna Bhat & Bo Chen, 2023. "Optimal Configuration of Extreme Fast Charging Stations Integrated with Energy Storage System and Photovoltaic Panels in Distribution Networks," Energies, MDPI, vol. 16(5), pages 1-20, March.
    7. Ahmad Almaghrebi & Fares Aljuheshi & Mostafa Rafaie & Kevin James & Mahmoud Alahmad, 2020. "Data-Driven Charging Demand Prediction at Public Charging Stations Using Supervised Machine Learning Regression Methods," Energies, MDPI, vol. 13(16), pages 1-21, August.
    8. Abood Mourad & Martin Hennebel & Ahmed Amrani & Amira Ben Hamida, 2021. "Analyzing the Fast-Charging Potential for Electric Vehicles with Local Photovoltaic Power Production in French Suburban Highway Network," Energies, MDPI, vol. 14(9), pages 1-20, April.
    9. D’Ettorre, F. & Banaei, M. & Ebrahimy, R. & Pourmousavi, S. Ali & Blomgren, E.M.V. & Kowalski, J. & Bohdanowicz, Z. & Łopaciuk-Gonczaryk, B. & Biele, C. & Madsen, H., 2022. "Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    10. Bruno Eduardo Carmelito & José Maria de Carvalho Filho, 2023. "Hosting Capacity of Electric Vehicles on LV/MV Distribution Grids—A New Methodology Assessment," Energies, MDPI, vol. 16(3), pages 1-19, February.
    11. Sarah Ouédraogo & Ghjuvan Antone Faggianelli & Guillaume Pigelet & Jean Laurent Duchaud & Gilles Notton, 2020. "Application of Optimal Energy Management Strategies for a Building Powered by PV/Battery System in Corsica Island," Energies, MDPI, vol. 13(17), pages 1-20, September.
    12. Moradi Amani, A. & Sajjadi, S.S. & Al Khafaf, N. & Song, H. & Jalili, M. & Yu, X. & Meegahapola, L. & McTaggart, P., 2023. "Technology balancing for reliable EV uptake in distribution grids: An Australian case study," Renewable Energy, Elsevier, vol. 206(C), pages 939-948.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2021:i:1:p:163-:d:712187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.