IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2710-d248730.html
   My bibliography  Save this article

A Nonlinear Broadband Electromagnetic Vibration Energy Harvester Based on Double-Clamped Beam

Author

Listed:
  • Zhuang Lu

    (Microsystem Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044, China)

  • Quan Wen

    (Microsystem Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    Fraunhofer ENAS, Technologie-Campus 3, 09126 Chemnitz, Germany)

  • Xianming He

    (Microsystem Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044, China)

  • Zhiyu Wen

    (Microsystem Research Center, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
    Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044, China)

Abstract

The performance of vibration energy harvesters is usually restricted by their frequency bandwidth. The double-clamped beam with strong natural nonlinearity is a simple way that can effectively expand the frequency bandwidth of the vibration energy harvester. In this article, a nonlinear electromagnetic vibration energy harvester with monostable double-clamped beam was proposed. A systematic analysis was conducted and a distributed parameter analytical model was established. On this basis, the output performance was estimated by the analytical model. It was found that the nonlinearity of the double-clamped beam had little influence on the maximum output, while broadening the frequency bandwidth. In addition, the resonant frequency, the frequency bandwidth, and the maximum output all increased following the increase of excitation level. Furthermore, the resonant frequency varies with the load changes, due to the electromagnetic damping, so the maximum output power should be gained at its optimum load and frequency. To experimentally verify the established analytical model, an electromagnetic vibration energy harvester demonstrator was built. The prediction by the analytical model was confirmed by the experiment. As a result, the open-circuit voltage, the average power and the frequency bandwidth of the electromagnetic vibration energy harvester can reach up to 3.6 V, 1.78 mW, and 11 Hz, respectively, under only 1 G acceleration, which shows a prospect for the application of the electromagnetic vibration energy harvester based on a double-clamped beam.

Suggested Citation

  • Zhuang Lu & Quan Wen & Xianming He & Zhiyu Wen, 2019. "A Nonlinear Broadband Electromagnetic Vibration Energy Harvester Based on Double-Clamped Beam," Energies, MDPI, vol. 12(14), pages 1-12, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2710-:d:248730
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Orrego, Santiago & Shoele, Kourosh & Ruas, Andre & Doran, Kyle & Caggiano, Brett & Mittal, Rajat & Kang, Sung Hoon, 2017. "Harvesting ambient wind energy with an inverted piezoelectric flag," Applied Energy, Elsevier, vol. 194(C), pages 212-222.
    2. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    3. Song, Hyun-Cheol & Kumar, Prashant & Sriramdas, Rammohan & Lee, Hyeon & Sharpes, Nathan & Kang, Min-Gyu & Maurya, Deepam & Sanghadasa, Mohan & Kang, Hyung-Won & Ryu, Jungho & Reynolds, William T. & Pr, 2018. "Broadband dual phase energy harvester: Vibration and magnetic field," Applied Energy, Elsevier, vol. 225(C), pages 1132-1142.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdolreza Pasharavesh & Reza Moheimani & Hamid Dalir, 2020. "Performance Analysis of an Electromagnetically Coupled Piezoelectric Energy Scavenger," Energies, MDPI, vol. 13(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Lin, S.X. & Wang, L., 2019. "Theoretical modeling, wind tunnel measurements, and realistic environment testing of galloping-based electromagnetic energy harvesters," Applied Energy, Elsevier, vol. 254(C).
    2. Salazar, R. & Abdelkefi, A., 2020. "Nonlinear analysis of a piezoelectric energy harvester in body undulatory caudal fin aquatic unmanned vehicles," Applied Energy, Elsevier, vol. 263(C).
    3. Muhammad Abdullah Sheeraz & Muhammad Sohail Malik & Khalid Rehman & Hassan Elahi & Zubair Butt & Iftikhar Ahmad & Marco Eugeni & Paolo Gaudenzi, 2021. "Numerical Assessment and Parametric Optimization of a Piezoelectric Wind Energy Harvester for IoT-Based Applications," Energies, MDPI, vol. 14(9), pages 1-19, April.
    4. Sun, Rujie & Li, Qinyu & Yao, Jianfei & Scarpa, Fabrizio & Rossiter, Jonathan, 2020. "Tunable, multi-modal, and multi-directional vibration energy harvester based on three-dimensional architected metastructures," Applied Energy, Elsevier, vol. 264(C).
    5. Ebrahimian, Fariba & Kabirian, Zohre & Younesian, Davood & Eghbali, Pezhman, 2021. "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, Elsevier, vol. 295(C).
    6. Silva-Leon, Jorge & Cioncolini, Andrea & Nabawy, Mostafa R.A. & Revell, Alistair & Kennaugh, Andrew, 2019. "Simultaneous wind and solar energy harvesting with inverted flags," Applied Energy, Elsevier, vol. 239(C), pages 846-858.
    7. Jie Wang & Mostafa R. A. Nabawy & Andrea Cioncolini & Alistair Revell & Samuel Weigert, 2021. "Planform Geometry and Excitation Effects of PVDF-Based Vibration Energy Harvesters," Energies, MDPI, vol. 14(1), pages 1-21, January.
    8. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    9. Zhao, Lin-Chuan & Zou, Hong-Xiang & Yan, Ge & Liu, Feng-Rui & Tan, Ting & Zhang, Wen-Ming & Peng, Zhi-Ke & Meng, Guang, 2019. "A water-proof magnetically coupled piezoelectric-electromagnetic hybrid wind energy harvester," Applied Energy, Elsevier, vol. 239(C), pages 735-746.
    10. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    11. Chen, Lin & Liao, Xin & Sun, Beibei & Zhang, Ning & Wu, Jianwei, 2022. "A numerical-experimental dynamic analysis of high-efficiency and broadband bistable energy harvester with self-decreasing potential barrier effect," Applied Energy, Elsevier, vol. 317(C).
    12. Luo, Rongkang & Yu, Zhihao & Wu, Peibao & Hou, Zhichao, 2023. "Analytical solutions of the energy harvesting potential from vehicle vertical vibration based on statistical energy conservation," Energy, Elsevier, vol. 264(C).
    13. Wang, Junlei & Geng, Linfeng & Ding, Lin & Zhu, Hongjun & Yurchenko, Daniil, 2020. "The state-of-the-art review on energy harvesting from flow-induced vibrations," Applied Energy, Elsevier, vol. 267(C).
    14. Cong, Moyue & Gao, Yongzhuo & Wang, Weidong & He, Long & Mao, Xiwang & Long, Yi & Dong, Wei, 2024. "Asymmetry stagger array structure ultra-wideband vibration harvester integrating magnetically coupled nonlinear effects," Applied Energy, Elsevier, vol. 356(C).
    15. Huguet, Thomas & Badel, Adrien & Druet, Olivier & Lallart, Mickaƫl, 2018. "Drastic bandwidth enhancement of bistable energy harvesters: Study of subharmonic behaviors and their stability robustness," Applied Energy, Elsevier, vol. 226(C), pages 607-617.
    16. He, Lipeng & Liu, Lei & Zhou, Jianwen & Yu, Gang & Sun, Baoyu & Cheng, Guangming, 2022. "Design and analysis of a double-acting nonlinear wideband piezoelectric energy harvester under plucking and collision," Energy, Elsevier, vol. 239(PD).
    17. Shan, Xiaobiao & Li, Hongliang & Yang, Yuancai & Feng, Ju & Wang, Yicong & Xie, Tao, 2019. "Enhancing the performance of an underwater piezoelectric energy harvester based on flow-induced vibration," Energy, Elsevier, vol. 172(C), pages 134-140.
    18. Latif, Usman & Younis, M. Yamin & Idrees, Saad & Uddin, Emad & Abdelkefi, Abdessattar & Munir, Adnan & Zhao, Ming, 2023. "Synergistic analysis of wake effect of two cylinders on energy harvesting characteristics of piezoelectric flag," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Xie, Xiangdong & Zhang, Jiankun & Wang, Zijing & Li, Lingjie & Du, Guofeng, 2024. "The effect of magnetic proof masses on the energy harvesting bandwidth of piezoelectric coupled cantilever array," Applied Energy, Elsevier, vol. 353(PA).
    20. Zhang, L.B. & Dai, H.L. & Abdelkefi, A. & Wang, L., 2019. "Experimental investigation of aerodynamic energy harvester with different interference cylinder cross-sections," Energy, Elsevier, vol. 167(C), pages 970-981.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2710-:d:248730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.