IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1673-d519192.html
   My bibliography  Save this article

Methodology for Estimating the Effect of Traffic Flow Management on Fuel Consumption and CO 2 Production: A Case Study of Celje, Slovenia

Author

Listed:
  • Borut Jereb

    (Faculty of Logistics, University of Maribor, 3000 Celje, Slovenia)

  • Ondrej Stopka

    (Faculty of Technology, Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic)

  • Tomáš Skrúcaný

    (Faculty of Operation and Economics of Transport and Communication, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia)

Abstract

The manuscript discusses the investigation of vehicle flow in a predesignated junction by an appropriate traffic flow management with an effort to minimize fuel consumption, the production of CO 2 , an essential greenhouse gas (hereinafter referred to as GHG), and related transport costs. The particular research study was undertaken in a frequented junction in the city of Celje, located in the eastern part of Slovenia. The results obtained summarize data on consumed fuel and produced CO 2 amounts depending on the type of vehicle, traffic flow mixture, traffic light signal plan, and actual vehicle velocity. These values were calculated separately for three different conditions of traffic flow management. Amounts of fuel consumed were experimentally investigated in real traffic situations, whereas CO 2 production was calculated by applying the actual European standard entitled EN 16258:2012 associated with a guideline for measuring emission values, as well as by examining specific traffic flow parameters. The key objective of the manuscript is to present multiple scenarios towards striving to minimize environmental impacts and improve transport operation’s economic consequences when implementing proper traffic flow management. As for crucial findings, we quantified fuel consumption and CO 2 emissions based on real data on the number and type of vehicles crossing the examined intersection and traffic light switching intervals. The results show that most of the CO 2 was produced while waiting and in the accelerating phase in front of traffic lights, whereby in the running phase through the intersection, significantly less fuel was used. This study represents a mosaic fragment of research addressing endeavors to reduce CO 2 production in urban transport. Following the experiments conducted, we can see a notable contribution towards reducing CO 2 production with known and tested interventions in the existing transport infrastructure. A procedure embracing individual research steps may be deemed as an approach methodology dealing with traffic flow management with an aim to decrease the environmental and economic impacts of traffic and transport operation; this is where the novelty of the research lies.

Suggested Citation

  • Borut Jereb & Ondrej Stopka & Tomáš Skrúcaný, 2021. "Methodology for Estimating the Effect of Traffic Flow Management on Fuel Consumption and CO 2 Production: A Case Study of Celje, Slovenia," Energies, MDPI, vol. 14(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1673-:d:519192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    2. Krystian Pietrzak & Oliwia Pietrzak, 2020. "Environmental Effects of Electromobility in a Sustainable Urban Public Transport," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    3. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    4. Umarov, Khojamahmad, 2016. "Сельскохозяйственная Политика В Производстве Хлопка И Диверсификация Агропромышленного Комплекса В Таджикистане [Agricultural policy in cotton production and the diversification of the agricultural," IAMO Discussion Papers 159, Leibniz Institute of Agricultural Development in Transition Economies (IAMO).
    5. Neil Cuthill & Mengqiu Cao & Yuqi Liu & Xing Gao & Yuerong Zhang, 2019. "The Association between Urban Public Transport Infrastructure and Social Equity and Spatial Accessibility within the Urban Environment: An Investigation of Tramlink in London," Sustainability, MDPI, vol. 11(5), pages 1-18, February.
    6. Jorge Martins & F. P. Brito, 2020. "Alternative Fuels for Internal Combustion Engines," Energies, MDPI, vol. 13(16), pages 1-34, August.
    7. Jacek CABAN & Paweł DROŹDZIEL & Piotr IGNACIUK & Paweł KORDOS, 2019. "The Impact Of Changing The Fuel Dose On Chosen Parameters Of The Diesel Engine Start-Up Process," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 14(4), pages 51-62, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Slavin Viktor & Shuba Yevheniy & Caban Jacek & Matijosius Jonas & Rimkus Alfredas & Korpach Anatolii & Gutarevych Serhiy, 2022. "The Performance of a Car with Various Engine Power Systems – Part I," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 130-140, January.
    2. Krystian Pietrzak & Oliwia Pietrzak & Andrzej Montwiłł, 2021. "Effects of Incorporating Rail Transport into a Zero-Emission Urban Deliveries System: Application of Light Freight Railway (LFR) Electric Trains," Energies, MDPI, vol. 14(20), pages 1-24, October.
    3. Branislav Šarkan & Marek Jaśkiewicz & Przemysław Kubiak & Dariusz Tarnapowicz & Michal Loman, 2022. "Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System," Energies, MDPI, vol. 15(3), pages 1-22, February.
    4. Slavin Viktor & Shuba Yevheniy & Caban Jacek & Matijosius Jonas & Rimkus Alfredas & Korpach Anatolii & Gutarevych Serhiy, 2022. "The Performance of a Car with Various Engine Power Systems – Part II," LOGI – Scientific Journal on Transport and Logistics, Sciendo, vol. 13(1), pages 141-151, January.
    5. Krystian Pietrzak & Oliwia Pietrzak, 2022. "Tram System as a Challenge for Smart and Sustainable Urban Public Transport: Effects of Applying Bi-Directional Trams," Energies, MDPI, vol. 15(15), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Xiao & Feiyue Yang & Yong Yang & Che Chen & Wuer Ha, 2024. "A Sustainable Production Planning Scheme for New Energy Vehicles in China," Sustainability, MDPI, vol. 16(19), pages 1-24, September.
    2. Santos, Alberto & Maia, Pedro & Jacob, Rodrigo & Wei, Huang & Callegari, Camila & Oliveira Fiorini, Ana Carolina & Schaeffer, Roberto & Szklo, Alexandre, 2024. "Road conditions and driving patterns on fuel usage: Lessons from an emerging economy," Energy, Elsevier, vol. 295(C).
    3. Vladimír Konečný & Jozef Gnap & Tomáš Settey & František Petro & Tomáš Skrúcaný & Tomasz Figlus, 2020. "Environmental Sustainability of the Vehicle Fleet Change in Public City Transport of Selected City in Central Europe," Energies, MDPI, vol. 13(15), pages 1-23, July.
    4. Dietrich, Antje-Mareike, 2016. "Governmental platform intermediation to promote alternative fuel vehicles," Economics Department Working Paper Series 16, Technische Universität Braunschweig, Economics Department.
    5. Hakim Hammadou & Claire Papaix, 2015. "Policy packages for modal shift and CO2 reduction in Lille, France," Working Papers 1501, Chaire Economie du climat.
    6. Bayissa Badada Badassa & Baiqing Sun & Lixin Qiao, 2020. "Sustainable Transport Infrastructure and Economic Returns: A Bibliometric and Visualization Analysis," Sustainability, MDPI, vol. 12(5), pages 1-24, March.
    7. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    8. Hache, Emmanuel & Seck, Gondia Sokhna & Simoen, Marine & Bonnet, Clément & Carcanague, Samuel, 2019. "Critical raw materials and transportation sector electrification: A detailed bottom-up analysis in world transport," Applied Energy, Elsevier, vol. 240(C), pages 6-25.
    9. Yongjun Shen & Qiong Bao & Elke Hermans, 2020. "Applying an Alternative Approach for Assessing Sustainable Road Transport: A Benchmarking Analysis on EU Countries," Sustainability, MDPI, vol. 12(24), pages 1-16, December.
    10. Tsita, Katerina G. & Pilavachi, Petros A., 2012. "Evaluation of alternative fuels for the Greek road transport sector using the analytic hierarchy process," Energy Policy, Elsevier, vol. 48(C), pages 677-686.
    11. Artur Jaworski & Vasyl Mateichyk & Hubert Kuszewski & Maksymilian Mądziel & Paweł Woś & Bożena Babiarz & Mirosław Śmieszek & Sławomir Porada, 2023. "Towards Cleaner Cities: An Analysis of the Impact of Bus Fleet Decomposition on PM and NO X Emissions Reduction in Sustainable Public Transport," Energies, MDPI, vol. 16(19), pages 1-18, October.
    12. Feitelson, Eran & Cohen-Blankshtain, Galit, 2018. "Public transport planning in a spatially segmented city: The case of Jerusalem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 65-74.
    13. Ellen De Schepper & Steven Van Passel & Sebastien Lizin & Thomas Vincent & Benjamin Martin & Xavier Gandibleux, 2016. "Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(1), pages 1-27, March.
    14. Robaina, Margarita & Neves, Ana, 2021. "Complete decomposition analysis of CO2 emissions intensity in the transport sector in Europe," Research in Transportation Economics, Elsevier, vol. 90(C).
    15. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    16. Behrends, Sönke, 2017. "Burden or opportunity for modal shift? – Embracing the urban dimension of intermodal road-rail transport," Transport Policy, Elsevier, vol. 59(C), pages 10-16.
    17. Paweł Mazuro & Barbara Makarewicz, 2020. "The Potential of Wobble Plate Opposed Piston Axial Engines for Increased Efficiency," Energies, MDPI, vol. 13(21), pages 1-22, October.
    18. Alexander Petre & Jeffrey Wagner, 2013. "Green Consumption under Misperceived Prices: An Application to Active Transportation," Southern Economic Journal, John Wiley & Sons, vol. 80(1), pages 187-204, July.
    19. Ballo, Lukas & de Freitas, Lucas Meyer & Meister, Adrian & Axhausen, Kay W., 2023. "The E-Bike City as a radical shift toward zero-emission transport: Sustainable? Equitable? Desirable?," Journal of Transport Geography, Elsevier, vol. 111(C).
    20. Cheng, Long & Shi, Kunbo & De Vos, Jonas & Cao, Mengqiu & Witlox, Frank, 2021. "Examining the spatially heterogeneous effects of the built environment on walking among older adults," Transport Policy, Elsevier, vol. 100(C), pages 21-30.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1673-:d:519192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.