IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v61y2018icp36-50.html
   My bibliography  Save this article

Policy developments for the reduction of climate change impacts by the transportation sector

Author

Listed:
  • Ülengin, Füsun
  • Işık, Mine
  • Ekici, Şule Önsel
  • Özaydın, Özay
  • Kabak, Özgür
  • Topçu, Y. İlker

Abstract

The transportation sector is one of the most significant sources of anthropogenic greenhouse gas emissions. In order to mitigate climate change, it is important to apply effective and immediate policies to reduce the transportation sector's emissions. This study aims to: (1) define the dimensions of the transportation sector, such as its environmental, economic, social, and political elements, and (2) investigate how they relate to climate change, in order to assess potential mitigation scenarios and policies that could reduce the sector's contribution to climate change. First, sector-related variables were specified using expert opinions and a literature survey. Relationships between the variables and the associated intensity values were then identified using document coding, as well as by gathering expert opinions through a workshop. A fuzzy cognitive map analysis was then conducted to investigate the relationships between the variables and the resulting impacts by the transportation sector on climate change. A scenario analysis was also conducted in order to identify the most effective policies in reducing the impacts of transportation on climate change, at both the local and global levels. For the scenario analysis at the global level, projections by the International Energy Agency were analyzed through the model. The local policy suggestions developed by Turkish authorities were also evaluated using scenario analysis.

Suggested Citation

  • Ülengin, Füsun & Işık, Mine & Ekici, Şule Önsel & Özaydın, Özay & Kabak, Özgür & Topçu, Y. İlker, 2018. "Policy developments for the reduction of climate change impacts by the transportation sector," Transport Policy, Elsevier, vol. 61(C), pages 36-50.
  • Handle: RePEc:eee:trapol:v:61:y:2018:i:c:p:36-50
    DOI: 10.1016/j.tranpol.2017.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X17300094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2017.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tietje, Olaf, 2005. "Identification of a small reliable and efficient set of consistent scenarios," European Journal of Operational Research, Elsevier, vol. 162(2), pages 418-432, April.
    2. Han, Rong & Yu, Bi-Ying & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2017. "Carbon emissions quotas in the Chinese road transport sector: A carbon trading perspective," Energy Policy, Elsevier, vol. 106(C), pages 298-309.
    3. Barry Ubbels & Caroline Rodenburg & Peter Nijkamp, 2003. "A multi-layer scenario analysis for sustainable international transport," Transportation Planning and Technology, Taylor & Francis Journals, vol. 26(1), pages 69-103, February.
    4. Hickman, Robin & Ashiru, Olu & Banister, David, 2010. "Transport and climate change: Simulating the options for carbon reduction in London," Transport Policy, Elsevier, vol. 17(2), pages 110-125, March.
    5. Greenblatt, Jeffery B., 2015. "Modeling California policy impacts on greenhouse gas emissions," Energy Policy, Elsevier, vol. 78(C), pages 158-172.
    6. Stanley, John K. & Hensher, David A. & Loader, Chris, 2011. "Road transport and climate change: Stepping off the greenhouse gas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 1020-1030.
    7. Hensher, David A., 2008. "Empirical approaches to combining revealed and stated preference data: Some recent developments with reference to urban mode choice," Research in Transportation Economics, Elsevier, vol. 23(1), pages 23-29, January.
    8. Yang, Christopher & McCollum, David L & McCarthy, Ryan & Leighty, Wayne, 2009. "Meeting an 80% Reduction in Greenhouse Gas Emissions from Transportation by 2050: A Case Study in California," Institute of Transportation Studies, Working Paper Series qt2ns1q98f, Institute of Transportation Studies, UC Davis.
    9. Lu, Liwei & Preckel, Paul V. & Gotham, Douglas & Liu, Andrew L., 2016. "An assessment of alternative carbon mitigation policies for achieving the emissions reduction of the Clean Power Plan: Case study for the state of Indiana," Energy Policy, Elsevier, vol. 96(C), pages 661-672.
    10. Elvik, Rune & Ramjerdi, Farideh, 2014. "A comparative analysis of the effects of economic policy instruments in promoting environmentally sustainable transport," Transport Policy, Elsevier, vol. 33(C), pages 89-95.
    11. Xenias, Dimitrios & Whitmarsh, Lorraine, 2013. "Dimensions and determinants of expert and public attitudes to sustainable transport policies and technologies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 48(C), pages 75-85.
    12. Goulden, Murray & Ryley, Tim & Dingwall, Robert, 2014. "Beyond ‘predict and provide’: UK transport, the growth paradigm and climate change," Transport Policy, Elsevier, vol. 32(C), pages 139-147.
    13. Sreekanth, K.J., 2016. "Review on integrated strategies for energy policy planning and evaluation of GHG mitigation alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 837-850.
    14. Holden, Erling & Linnerud, Kristin & Banister, David, 2013. "Sustainable passenger transport: Back to Brundtland," Transportation Research Part A: Policy and Practice, Elsevier, vol. 54(C), pages 67-77.
    15. Santos, Georgina & Behrendt, Hannah & Teytelboym, Alexander, 2010. "Part II: Policy instruments for sustainable road transport," Research in Transportation Economics, Elsevier, vol. 28(1), pages 46-91.
    16. Bojkovic, Natasa & Anic, Ivan & Pejcic-Tarle, Snezana, 2010. "One solution for cross-country transport-sustainability evaluation using a modified ELECTRE method," Ecological Economics, Elsevier, vol. 69(5), pages 1176-1186, March.
    17. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    18. Limanond, Thirayoot & Jomnonkwao, Sajjakaj & Srikaew, Artit, 2011. "Projection of future transport energy demand of Thailand," Energy Policy, Elsevier, vol. 39(5), pages 2754-2763, May.
    19. Tsamboulas, Dimitrios & Vrenken, Huub & Lekka, Anna-Maria, 2007. "Assessment of a transport policy potential for intermodal mode shift on a European scale," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(8), pages 715-733, October.
    20. Schuckmann, Steffen W. & Gnatzy, Tobias & Darkow, Inga-Lena & von der Gracht, Heiko A., 2012. "Analysis of factors influencing the development of transport infrastructure until the year 2030 — A Delphi based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1373-1387.
    21. Liu, Shiyong & Triantis, Konstantinos P. & Sarangi, Sudipta, 2010. "A framework for evaluating the dynamic impacts of a congestion pricing policy for a transportation socioeconomic system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 596-608, October.
    22. Mattila, Tuomas & Antikainen, Riina, 2011. "Backcasting sustainable freight transport systems for Europe in 2050," Energy Policy, Elsevier, vol. 39(3), pages 1241-1248, March.
    23. Malayath, Manoj & Verma, Ashish, 2013. "Activity based travel demand models as a tool for evaluating sustainable transportation policies," Research in Transportation Economics, Elsevier, vol. 38(1), pages 45-66.
    24. Plambeck, Erica L., 2012. "Reducing greenhouse gas emissions through operations and supply chain management," Energy Economics, Elsevier, vol. 34(S1), pages 64-74.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongpei & Guan, Zhongyu & Zhang, Qian, 2023. "Railway opening and carbon emissions in distressed areas: Evidence from China's state-level poverty-stricken counties," Transport Policy, Elsevier, vol. 130(C), pages 55-67.
    2. Zhang, Junyi & Hayashi, Yoshitsugu & Frank, Lawrence D., 2021. "COVID-19 and transport: Findings from a world-wide expert survey," Transport Policy, Elsevier, vol. 103(C), pages 68-85.
    3. Rocio de la Torre & Canan G. Corlu & Javier Faulin & Bhakti S. Onggo & Angel A. Juan, 2021. "Simulation, Optimization, and Machine Learning in Sustainable Transportation Systems: Models and Applications," Sustainability, MDPI, vol. 13(3), pages 1-21, February.
    4. Eckert, Jony Javorski & Silva, Fabrício L. & da Silva, Samuel Filgueira & Bueno, André Valente & de Oliveira, Mona Lisa Moura & Silva, Ludmila C.A., 2022. "Optimal design and power management control of hybrid biofuel–electric powertrain," Applied Energy, Elsevier, vol. 325(C).
    5. Zuo, Dajie & Liang, Qichen & Zhan, Shuguang & Huang, Wencheng & Yang, Shenglan & Wang, Mengyun, 2023. "Using energy consumption constraints to control the freight transportation structure in China (2021–2030)," Energy, Elsevier, vol. 262(PB).
    6. Loy-Benitez, Jorge & Safder, Usman & Nguyen, Hai-Tra & Li, Qian & Woo, TaeYong & Yoo, ChangKyoo, 2021. "Techno-economic assessment and smart management of an integrated fuel cell-based energy system with absorption chiller for power, hydrogen, heating, and cooling in an electrified railway network," Energy, Elsevier, vol. 233(C).
    7. Yang, Yi-Chih & Ge, Ying-En, 2020. "Adaptation strategies for port infrastructure and facilities under climate change at the Kaohsiung port," Transport Policy, Elsevier, vol. 97(C), pages 232-244.
    8. Teixeira, Ana Carolina Rodrigues & Machado, Pedro Gerber & Borges, Raquel Rocha & Mouette, Dominique, 2020. "Public policies to implement alternative fuels in the road transport sector," Transport Policy, Elsevier, vol. 99(C), pages 345-361.
    9. Pal, Preeti & Gopal, P.R.C. & Ramkumar, M., 2023. "Impact of transportation on climate change: An ecological modernization theoretical perspective," Transport Policy, Elsevier, vol. 130(C), pages 167-183.
    10. Fontoura, Wlisses Bonelá & Chaves, Gisele de Lorena Diniz & Ribeiro, Glaydston Mattos, 2019. "The Brazilian urban mobility policy: The impact in São Paulo transport system using system dynamics," Transport Policy, Elsevier, vol. 73(C), pages 51-61.
    11. Kumar, Aalok & Anbanandam, Ramesh, 2022. "Assessment of environmental and social sustainability performance of the freight transportation industry: An index-based approach," Transport Policy, Elsevier, vol. 124(C), pages 43-60.
    12. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    13. Stadler Benz, Philippe & Stauffacher, Michael, 2023. "A systemic approach to the transformation of swiss railway stations: Mind the gap between the local, short-term and national, long-term worldviews," Transport Policy, Elsevier, vol. 132(C), pages 99-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hickman, Robin & Saxena, Sharad & Banister, David & Ashiru, Olu, 2012. "Examining transport futures with scenario analysis and MCA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 560-575.
    2. Soria-Lara, Julio A. & Ariza-Álvarez, Amor & Aguilera-Benavente, Francisco & Cascajo, Rocío & Arce-Ruiz, Rosa M. & López, Cristina & Gómez-Delgado, Montserrat, 2021. "Participatory visioning for building disruptive future scenarios for transport and land use planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    3. Keyju Lee & Junjae Chae & Jinwoo Kim, 2019. "A Courier Service with Electric Bicycles in an Urban Area: The Case in Seoul," Sustainability, MDPI, vol. 11(5), pages 1-19, February.
    4. Schwanen, Tim & Banister, David & Anable, Jillian, 2011. "Scientific research about climate change mitigation in transport: A critical review," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(10), pages 993-1006.
    5. J. Javid, Roxana & Nejat, Ali & Hayhoe, Katharine, 2014. "Selection of CO2 mitigation strategies for road transportation in the United States using a multi-criteria approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 960-972.
    6. Hickman, Robin & Ashiru, Olu & Banister, David, 2011. "Transitions to low carbon transport futures: strategic conversations from London and Delhi," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1553-1562.
    7. Siti Indati Mustapa & Hussain Ali Bekhet, 2015. "Investigating Factors Affecting CO2 Emissions in Malaysian Road Transport Sector," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1073-1083.
    8. Kopnina, Helen, 2011. "Kids and cars: Environmental attitudes in children," Transport Policy, Elsevier, vol. 18(4), pages 573-578, August.
    9. Liu, Xue & Ma, Shoufeng & Tian, Junfang & Jia, Ning & Li, Geng, 2015. "A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing," Energy Policy, Elsevier, vol. 85(C), pages 253-270.
    10. Guimarães, Vanessa de Almeida & Leal Junior, Ilton Curty & da Silva, Marcelino Aurélio Vieira, 2018. "Evaluating the sustainability of urban passenger transportation by Monte Carlo simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 732-752.
    11. Marletto, Gerardo, 2011. "Structure, agency and change in the car regime. A review of the literature," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 47, pages 71-88.
    12. Zuo, Chengchoa & Birkin, Mark & Clarke, Graham & McEvoy, Fiona & Bloodworth, Andrew, 2018. "Reducing carbon emissions related to the transportation of aggregates: Is road or rail the solution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 26-38.
    13. Soria-Lara, Julio A. & Banister, David, 2017. "Dynamic participation processes for policy packaging in transport backcasting studies," Transport Policy, Elsevier, vol. 58(C), pages 19-30.
    14. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.
    15. Anais Mathez & Kevin Manaugh & Vincent Chakour & Ahmed El-Geneidy & Marianne Hatzopoulou, 2013. "How can we alter our carbon footprint? Estimating GHG emissions based on travel survey information," Transportation, Springer, vol. 40(1), pages 131-149, January.
    16. Focas, Caralampo, 2016. "Travel behaviour and CO2 emissions in urban and exurban London and New York," Transport Policy, Elsevier, vol. 46(C), pages 82-91.
    17. Kishita, Yusuke & Höjer, Mattias & Quist, Jaco, 2024. "Consolidating backcasting: A design framework towards a users’ guide," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    18. Olsson, Linda & Hjalmarsson, Linnea & Wikström, Martina & Larsson, Mårten, 2015. "Bridging the implementation gap: Combining backcasting and policy analysis to study renewable energy in urban road transport," Transport Policy, Elsevier, vol. 37(C), pages 72-82.
    19. Camilleri, Rosalie & Attard, Maria & Hickman, Robin, 2022. "Understanding barriers to modal shift in Malta: A practice-theoretical perspective of everyday mobility," Journal of Transport Geography, Elsevier, vol. 104(C).
    20. Pei Liu & Dong Mu & Daqing Gong, 2017. "Eliminating Overload Trucking via a Modal Shift to Achieve Intercity Freight Sustainability: A System Dynamics Approach," Sustainability, MDPI, vol. 9(3), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:61:y:2018:i:c:p:36-50. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.