IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1392-d509836.html
   My bibliography  Save this article

Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking

Author

Listed:
  • Joakim Andersson

    (Department of Chemical Engineering, Division of Energy Processes, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden)

Abstract

Steelmaking is responsible for approximately one third of total industrial carbon dioxide (CO 2 ) emissions. Hydrogen (H 2 ) direct reduction (H-DR) may be a feasible route towards the decarbonization of primary steelmaking if H 2 is produced via electrolysis using fossil-free electricity. However, electrolysis is an electricity-intensive process. Therefore, it is preferable that H 2 is predominantly produced during times of low electricity prices, which is enabled by the storage of H 2 . This work compares the integration of H 2 storage in four liquid carriers, methanol (MeOH), formic acid (FA), ammonia (NH 3 ) and perhydro-dibenzyltoluene (H18-DBT), in H-DR processes. In contrast to conventional H 2 storage methods, these carriers allow for H 2 storage in liquid form at moderate overpressures, reducing the storage capacity cost. The main downside to liquid H 2 carriers is that thermochemical processes are necessary for both the storage and release processes, often with significant investment and operational costs. The carriers are compared using thermodynamic and economic data to estimate operational and capital costs in the H-DR context considering process integration options. It is concluded that the use of MeOH is promising compared to the other considered carriers. For large storage volumes, MeOH-based H 2 storage may also be an attractive option to the underground storage of compressed H 2 . The other considered liquid H 2 carriers suffer from large thermodynamic barriers for hydrogenation (FA) or dehydrogenation (NH 3 , H18-DBT) and higher investment costs. However, for the use of MeOH in an H-DR process to be practically feasible, questions regarding process flexibility and the optimal sourcing of CO 2 and heat must be answered.

Suggested Citation

  • Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1392-:d:509836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    2. Eypasch, Martin & Schimpe, Michael & Kanwar, Aastha & Hartmann, Tobias & Herzog, Simon & Frank, Torsten & Hamacher, Thomas, 2017. "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers," Applied Energy, Elsevier, vol. 185(P1), pages 320-330.
    3. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    4. Panagiota Stathi & Maria Solakidou & Maria Louloudi & Yiannis Deligiannakis, 2020. "From Homogeneous to Heterogenized Molecular Catalysts for H 2 Production by Formic Acid Dehydrogenation: Mechanistic Aspects, Role of Additives, and Co-Catalysts," Energies, MDPI, vol. 13(3), pages 1-25, February.
    5. Lundgren, J. & Ekbom, T. & Hulteberg, C. & Larsson, M. & Grip, C.-E. & Nilsson, L. & Tunå, P., 2013. "Methanol production from steel-work off-gases and biomass based synthesis gas," Applied Energy, Elsevier, vol. 112(C), pages 431-439.
    6. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    7. Fikrt, André & Brehmer, Richard & Milella, Vito-Oronzo & Müller, Karsten & Bösmann, Andreas & Preuster, Patrick & Alt, Nicolas & Schlücker, Eberhard & Wasserscheid, Peter & Arlt, Wolfgang, 2017. "Dynamic power supply by hydrogen bound to a liquid organic hydrogen carrier," Applied Energy, Elsevier, vol. 194(C), pages 1-8.
    8. Schulte Beerbühl, S. & Fröhling, M. & Schultmann, F., 2015. "Combined scheduling and capacity planning of electricity-based ammonia production to integrate renewable energies," European Journal of Operational Research, Elsevier, vol. 241(3), pages 851-862.
    9. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    10. Gabrielli, Paolo & Poluzzi, Alessandro & Kramer, Gert Jan & Spiers, Christopher & Mazzotti, Marco & Gazzani, Matteo, 2020. "Seasonal energy storage for zero-emissions multi-energy systems via underground hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    11. Marinos Theodorakopoulos & Maria Solakidou & Yiannis Deligiannakis & Maria Louloudi, 2021. "A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O 2," Energies, MDPI, vol. 14(2), pages 1-10, January.
    12. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    13. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    14. Purna Chandra Rao & Minyoung Yoon, 2020. "Potential Liquid-Organic Hydrogen Carrier (LOHC) Systems: A Review on Recent Progress," Energies, MDPI, vol. 13(22), pages 1-23, November.
    15. Buttler, Alexander & Spliethoff, Hartmut, 2018. "Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2440-2454.
    16. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
    2. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Zaiter, Issa & Ramadan, Mohamad & Bouabid, Ali & El-Fadel, Mutasem & Mezher, Toufic, 2023. "Potential utilization of hydrogen in the UAE's industrial sector," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
    2. Campion, Nicolas & Nami, Hossein & Swisher, Philip R. & Vang Hendriksen, Peter & Münster, Marie, 2023. "Techno-economic assessment of green ammonia production with different wind and solar potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    3. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    4. Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Wassermann, Timo & Muehlenbrock, Henry & Kenkel, Philipp & Zondervan, Edwin, 2022. "Supply chain optimization for electricity-based jet fuel: The case study Germany," Applied Energy, Elsevier, vol. 307(C).
    6. Adnan, Muflih A. & Kibria, Md Golam, 2020. "Comparative techno-economic and life-cycle assessment of power-to-methanol synthesis pathways," Applied Energy, Elsevier, vol. 278(C).
    7. Baldi, Francesco & Coraddu, Andrea & Kalikatzarakis, Miltiadis & Jeleňová, Diana & Collu, Maurizio & Race, Julia & Maréchal, François, 2022. "Optimisation-based system designs for deep offshore wind farms including power to gas technologies," Applied Energy, Elsevier, vol. 310(C).
    8. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    9. Godinho, João & Hoefnagels, Ric & Braz, Catarina G. & Sousa, Ana M. & Granjo, José F.O., 2023. "An economic and greenhouse gas footprint assessment of international maritime transportation of hydrogen using liquid organic hydrogen carriers," Energy, Elsevier, vol. 278(PA).
    10. Brigljević, Boris & Byun, Manhee & Lim, Hankwon, 2020. "Design, economic evaluation, and market uncertainty analysis of LOHC-based, CO2 free, hydrogen delivery systems," Applied Energy, Elsevier, vol. 274(C).
    11. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    12. Grüger, Fabian & Dylewski, Lucy & Robinius, Martin & Stolten, Detlef, 2018. "Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior," Applied Energy, Elsevier, vol. 228(C), pages 1540-1549.
    13. Yáñez, María & Ortiz, Alfredo & Brunaud, Braulio & Grossmann, Ignacio E. & Ortiz, Inmaculada, 2018. "Contribution of upcycling surplus hydrogen to design a sustainable supply chain: The case study of Northern Spain," Applied Energy, Elsevier, vol. 231(C), pages 777-787.
    14. Abadie, Luis Mª & Chamorro, José M., 2023. "Investment in wind-based hydrogen production under economic and physical uncertainties," Applied Energy, Elsevier, vol. 337(C).
    15. Kim, Dongin & Han, Jeehoon, 2020. "Techno-economic and climate impact analysis of carbon utilization process for methanol production from blast furnace gas over Cu/ZnO/Al2O3 catalyst," Energy, Elsevier, vol. 198(C).
    16. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    17. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    18. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    19. Dmitri A. Bulushev, 2021. "Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    20. Baena-Moreno, Francisco M. & Pastor-Pérez, Laura & Zhang, Zhien & Reina, T.R., 2020. "Stepping towards a low-carbon economy. Formic acid from biogas as case of study," Applied Energy, Elsevier, vol. 268(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1392-:d:509836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.