IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p733-d317900.html
   My bibliography  Save this article

From Homogeneous to Heterogenized Molecular Catalysts for H 2 Production by Formic Acid Dehydrogenation: Mechanistic Aspects, Role of Additives, and Co-Catalysts

Author

Listed:
  • Panagiota Stathi

    (Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece)

  • Maria Solakidou

    (Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Maria Louloudi

    (Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece)

  • Yiannis Deligiannakis

    (Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece)

Abstract

H 2 production via dehydrogenation of formic acid (HCOOH, FA), sodium formate (HCOONa, SF), or their mixtures, at near-ambient conditions, T < 100 °C, P = 1 bar, is intensively pursued, in the context of the most economically and environmentally eligible technologies. Herein we discuss molecular catalysts (ML), consisting of a metal center (M, e.g., Ru, Ir, Fe, Co) and an appropriate ligand (L), which exemplify highly efficient Turnover Numbers (TONs) and Turnover Frequencies (TOFs) in H 2 production from FA/SF. Typically, many of these ML catalysts require the presence of a cofactor that promotes their optimal cycling. Thus, we distinguish the concept of such cofactors in additives vs. co-catalysts: When used at high concentrations, that is stoichiometric amounts vs. the substrate (HCOONa, SF), the cofactors are sacrificial additives. In contrast, co-catalysts are used at much lower concentrations, that is at stoichiometric amount vs. the catalyst. The first part of the present review article discusses the mechanistic key steps and key controversies in the literature, taking into account theoretical modeling data. Then, in the second part, the role of additives and co-catalysts as well as the role of the solvent and the eventual inhibitory role of H 2 O are discussed in connection to the main mechanistic steps. For completeness, photons used as activators of ML catalysts are also discussed in the context of co-catalysts. In the third part, we discuss examples of promising hybrid nanocatalysts, consisting of a molecular catalyst ML attached on the surface of a nanoparticle. In the same context, we discuss nanoparticulate co-catalysts and hybrid co-catalysts, consisting of catalyst attached on the surface of a nanoparticle, and their role in the performance of molecular catalysts ML.

Suggested Citation

  • Panagiota Stathi & Maria Solakidou & Maria Louloudi & Yiannis Deligiannakis, 2020. "From Homogeneous to Heterogenized Molecular Catalysts for H 2 Production by Formic Acid Dehydrogenation: Mechanistic Aspects, Role of Additives, and Co-Catalysts," Energies, MDPI, vol. 13(3), pages 1-25, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:733-:d:317900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/733/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/733/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeff Joseph A. Celaje & Zhiyao Lu & Elyse A. Kedzie & Nicholas J. Terrile & Jonathan N. Lo & Travis J. Williams, 2016. "A prolific catalyst for dehydrogenation of neat formic acid," Nature Communications, Nature, vol. 7(1), pages 1-6, September.
    2. Mason, James E., 2007. "World energy analysis: H2 now or later?," Energy Policy, Elsevier, vol. 35(2), pages 1315-1329, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panagiota Stathi & Maria Solakidou & Areti Zindrou & Loukas Belles & Yiannis Deligiannakis, 2023. "Atomic {Pd n+ -X} States at Nanointerfaces: Implications in Energy-Related Catalysis," Energies, MDPI, vol. 16(2), pages 1-36, January.
    2. Marinos Theodorakopoulos & Maria Solakidou & Yiannis Deligiannakis & Maria Louloudi, 2021. "A Use-Store-Reuse (USR) Concept in Catalytic HCOOH Dehydrogenation: Case-Study of a Ru-Based Catalytic System for Long-Term USR under Ambient O 2," Energies, MDPI, vol. 14(2), pages 1-10, January.
    3. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    4. Dmitri A. Bulushev, 2021. "Progress in Catalytic Hydrogen Production from Formic Acid over Supported Metal Complexes," Energies, MDPI, vol. 14(5), pages 1-14, March.
    5. Maria Solakidou & Yiannis Georgiou & Yiannis Deligiannakis, 2021. "Double-Nozzle Flame Spray Pyrolysis as a Potent Technology to Engineer Noble Metal-TiO 2 Nanophotocatalysts for Efficient H 2 Production," Energies, MDPI, vol. 14(4), pages 1-16, February.
    6. Dmitri A. Bulushev, 2021. "Advanced Catalysis in Hydrogen Production from Formic Acid and Methanol," Energies, MDPI, vol. 14(20), pages 1-5, October.
    7. Maria Solakidou & Aikaterini Gemenetzi & Georgia Koutsikou & Marinos Theodorakopoulos & Yiannis Deligiannakis & Maria Louloudi, 2023. "Cost Efficiency Analysis of H 2 Production from Formic Acid by Molecular Catalysts," Energies, MDPI, vol. 16(4), pages 1-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansarinasab, Hojat & Hajabdollahi, Hassan & Fatimah, Manal, 2021. "Life cycle assessment (LCA) of a novel geothermal-based multigeneration system using LNG cold energy- integration of Kalina cycle, stirling engine, desalination unit and magnetic refrigeration system," Energy, Elsevier, vol. 231(C).
    2. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    3. Fthenakis, Vasilis & Mason, James E. & Zweibel, Ken, 2009. "The technical, geographical, and economic feasibility for solar energy to supply the energy needs of the US," Energy Policy, Elsevier, vol. 37(2), pages 387-399, February.
    4. Dooly, Gerard & Fitzpatrick, Colin & Lewis, Elfed, 2008. "Optical sensing of hazardous exhaust emissions using a UV based extrinsic sensor," Energy, Elsevier, vol. 33(4), pages 657-666.
    5. Shafiee, Shahriar & Topal, Erkan, 2008. "An econometrics view of worldwide fossil fuel consumption and the role of US," Energy Policy, Elsevier, vol. 36(2), pages 775-786, February.
    6. Ally, Jamie & Pryor, Trevor, 2009. "Accelerating hydrogen implementation by mass production of a hydrogen bus chassis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 616-624, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:733-:d:317900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.