IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6822-d1248192.html
   My bibliography  Save this article

Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)

Author

Listed:
  • Ju-Yeol Ryu

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea
    Department of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea)

  • Sungho Park

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Changhyeong Lee

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Seonghyeon Hwang

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

  • Jongwoong Lim

    (Institute for Advanced Engineering, Yongin 17180, Republic of Korea)

Abstract

Various research and development activities are being conducted to use hydrogen, an environmentally friendly fuel, to achieve carbon neutrality. Using natural gas–hydrogen blends has advantages such as the usage of traditional combined cycle power plant (CCPP) technology and existing natural gas piping infrastructure. Therefore, we conducted CCPP process modeling and economic analysis based on natural gas–hydrogen blends. For process analysis, we developed a process model for a 400 MW natural gas CCPP using ASPEN HYSYS and confirmed an error within the 1% range through operation data validation. For economic analysis, we comparatively reviewed the levelized cost of electricity (LCOE) of CCPPs using hydrogen blended up to 0.5 mole fraction. For LCOE sensitivity analysis, we used fuel cost, capital expenditures, capacity factor, and power generation as variables. LCOE is 109.15 KRW/kWh when the hydrogen fuel price is 2000 KRW/kg and the hydrogen mole fraction is increased to 0.5, a 5% increase from the 103.9 KRW/kWh of CCPPs that use only natural gas. Economic feasibility at the level of 100% natural gas CCPPs is possible by reducing capital expenditures (CAPEX) by at least 20%, but net output should be increased by at least 5% (20.47 MW) when considering only performance improvement.

Suggested Citation

  • Ju-Yeol Ryu & Sungho Park & Changhyeong Lee & Seonghyeon Hwang & Jongwoong Lim, 2023. "Techno-Economic Analysis of Hydrogen–Natural Gas Blended Fuels for 400 MW Combined Cycle Power Plants (CCPPs)," Energies, MDPI, vol. 16(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6822-:d:1248192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cesare Saccani & Marco Pellegrini & Alessandro Guzzini, 2020. "Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy," Energies, MDPI, vol. 13(18), pages 1-29, September.
    2. Jae-Eun Shin, 2022. "Hydrogen Technology Development and Policy Status by Value Chain in South Korea," Energies, MDPI, vol. 15(23), pages 1-19, November.
    3. Kotowicz, Janusz & Brzęczek, Mateusz, 2018. "Analysis of increasing efficiency of modern combined cycle power plant: A case study," Energy, Elsevier, vol. 153(C), pages 90-99.
    4. Farah Mneimneh & Hasan Ghazzawi & Mohammad Abu Hejjeh & Matteo Manganelli & Seeram Ramakrishna, 2023. "Roadmap to Achieving Sustainable Development via Green Hydrogen," Energies, MDPI, vol. 16(3), pages 1-25, January.
    5. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    6. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    7. Muhammad Haris Hamayun & Ibrahim M. Maafa & Murid Hussain & Rabya Aslam, 2020. "Simulation Study to Investigate the Effects of Operational Conditions on Methylcyclohexane Dehydrogenation for Hydrogen Production," Energies, MDPI, vol. 13(1), pages 1-15, January.
    8. Iren A. Makaryan & Igor V. Sedov & Eugene A. Salgansky & Artem V. Arutyunov & Vladimir S. Arutyunov, 2022. "A Comprehensive Review on the Prospects of Using Hydrogen–Methane Blends: Challenges and Opportunities," Energies, MDPI, vol. 15(6), pages 1-27, March.
    9. Ajanovic, Amela & Haas, Reinhard, 2018. "Economic prospects and policy framework for hydrogen as fuel in the transport sector," Energy Policy, Elsevier, vol. 123(C), pages 280-288.
    10. Jacek Jaworski & Paweł Kułaga & Tomasz Blacharski, 2020. "Study of the Effect of Addition of Hydrogen to Natural Gas on Diaphragm Gas Meters," Energies, MDPI, vol. 13(11), pages 1-20, June.
    11. Quarton, Christopher J. & Samsatli, Sheila, 2018. "Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 302-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duong Doan Ngoc & Kien Duong Trung & Phap Vu Minh, 2024. "A Power System Study on Hydrogen Conversion Pathways for Gas Turbine Power Plants in Vietnam towards Net Zero Target," Energies, MDPI, vol. 17(13), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romeo, Luis M. & Cavana, Marco & Bailera, Manuel & Leone, Pierluigi & Peña, Begoña & Lisbona, Pilar, 2022. "Non-stoichiometric methanation as strategy to overcome the limitations of green hydrogen injection into the natural gas grid," Applied Energy, Elsevier, vol. 309(C).
    2. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    3. Bucksteeg, Michael & Mikurda, Jennifer & Weber, Christoph, 2023. "Integration of power-to-gas into electricity markets during the ramp-up phase—Assessing the role of carbon pricing," Energy Economics, Elsevier, vol. 124(C).
    4. Cesare Saccani & Marco Pellegrini & Alessandro Guzzini, 2020. "Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy," Energies, MDPI, vol. 13(18), pages 1-29, September.
    5. Arturo Vallejos-Romero & Minerva Cordoves-Sánchez & César Cisternas & Felipe Sáez-Ardura & Ignacio Rodríguez & Antonio Aledo & Álex Boso & Jordi Prades & Boris Álvarez, 2022. "Green Hydrogen and Social Sciences: Issues, Problems, and Future Challenges," Sustainability, MDPI, vol. 15(1), pages 1-18, December.
    6. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Sebastián Mantilla & Diogo M. F. Santos, 2022. "Green and Blue Hydrogen Production: An Overview in Colombia," Energies, MDPI, vol. 15(23), pages 1-21, November.
    8. Kotowicz, Janusz & Brzęczek, Mateusz, 2019. "Comprehensive multivariable analysis of the possibility of an increase in the electrical efficiency of a modern combined cycle power plant with and without a CO2 capture and compression installations ," Energy, Elsevier, vol. 175(C), pages 1100-1120.
    9. Adrian Neacsa & Cristian Nicolae Eparu & Cașen Panaitescu & Doru Bogdan Stoica & Bogdan Ionete & Alina Prundurel & Sorin Gal, 2023. "Hydrogen–Natural Gas Mix—A Viable Perspective for Environment and Society," Energies, MDPI, vol. 16(15), pages 1-38, August.
    10. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    11. Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Kim, Sang-Kyung & Lee, Jay H., 2024. "Optimizing green hydrogen systems: Balancing economic viability and reliability in the face of supply-demand volatility," Applied Energy, Elsevier, vol. 368(C).
    12. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    13. Cristina Hora & Florin Ciprian Dan & Dinu-Calin Secui & Horea Nicolae Hora, 2024. "Systematic Literature Review on Pipeline Transport Losses of Hydrogen, Methane, and Their Mixture, Hythane," Energies, MDPI, vol. 17(18), pages 1-22, September.
    14. Yuanying Chi & Meng Xiao & Yuexia Pang & Menghan Yang & Yuhao Zheng, 2022. "Financing Efficiency Evaluation and Influencing Factors of Hydrogen Energy Listed Enterprises in China," Energies, MDPI, vol. 15(1), pages 1-16, January.
    15. Chauvy, Remi & Dubois, Lionel & Lybaert, Paul & Thomas, Diane & De Weireld, Guy, 2020. "Production of synthetic natural gas from industrial carbon dioxide," Applied Energy, Elsevier, vol. 260(C).
    16. Lee, Boreum & Lim, Dongjun & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2021. "Techno-economic analysis of H2 energy storage system based on renewable energy certificate," Renewable Energy, Elsevier, vol. 167(C), pages 91-98.
    17. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    18. Natalia Duarte Forero & Donovan Arango Barrios & Jorge Duarte Forero, 2019. "Overview of Potential Use of Hydroxyl and Hydrogen as an Alternative Fuel in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 525-534.
    19. Xu, Chuanbo & Wu, Yunna & Dai, Shuyu, 2020. "What are the critical barriers to the development of hydrogen refueling stations in China? A modified fuzzy DEMATEL approach," Energy Policy, Elsevier, vol. 142(C).
    20. Marcelo Azevedo Benetti & Florin Iov, 2023. "A Novel Scheme to Allocate the Green Energy Transportation Costs—Application to Carbon Captured and Hydrogen," Energies, MDPI, vol. 16(7), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6822-:d:1248192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.