IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v274y2020ics0306261920308266.html
   My bibliography  Save this article

Design, economic evaluation, and market uncertainty analysis of LOHC-based, CO2 free, hydrogen delivery systems

Author

Listed:
  • Brigljević, Boris
  • Byun, Manhee
  • Lim, Hankwon

Abstract

As the number of new candidates for liquid organic hydrogen carriers (LOHC) that are being identified and experimentally tested is increasing, so does the requirement to analytically evaluate large scale hydrogen delivery processes which will utilize these chemicals. Here, we detail a technological evaluation, cost estimation, and market performance analysis of a large-scale (1000 m3/h H2), CO2 emission-free, LOHC dehydrogenation system and the accompanying costs of supply logistics. Four reversible LOHC systems, Eutectic biphenyl/diphenylmethane mixture (EUT), 2-(N-Methylbenzyl)pyridine (MBP), N-phenylcarbazole (NPC), and N-ethylcarbazole (NEC) were evaluated in stand-alone cases, with the fifth case utilizing all four in a temperature-cascade (TC) process intensification. Total capital investments for this H2 output scale were found to range from 24 to 44 mil USD, with shipping cost and LOHC price determined to be main parameters affecting the process economics. Market performance results show that for the 3.5 USD/kg H2 selling price, the purchase prices of LOHC chemicals must be 5.44, 4.74, 4.01, 4.12 USD/kg for EUT, MBP, NPC and NEC respectively. Finally, the TC market operating and market performance was quantified and market conditions for justifiable investment in such a system were defined.

Suggested Citation

  • Brigljević, Boris & Byun, Manhee & Lim, Hankwon, 2020. "Design, economic evaluation, and market uncertainty analysis of LOHC-based, CO2 free, hydrogen delivery systems," Applied Energy, Elsevier, vol. 274(C).
  • Handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308266
    DOI: 10.1016/j.apenergy.2020.115314
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920308266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115314?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel Forberg & Tobias Schwob & Muhammad Zaheer & Martin Friedrich & Nobuyoshi Miyajima & Rhett Kempe, 2016. "Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia," Nature Communications, Nature, vol. 7(1), pages 1-6, December.
    2. Eypasch, Martin & Schimpe, Michael & Kanwar, Aastha & Hartmann, Tobias & Herzog, Simon & Frank, Torsten & Hamacher, Thomas, 2017. "Model-based techno-economic evaluation of an electricity storage system based on Liquid Organic Hydrogen Carriers," Applied Energy, Elsevier, vol. 185(P1), pages 320-330.
    3. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    4. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    5. Wen, Chuang & Rogie, Brice & Kærn, Martin Ryhl & Rothuizen, Erasmus, 2020. "A first study of the potential of integrating an ejector in hydrogen fuelling stations for fuelling high pressure hydrogen vehicles," Applied Energy, Elsevier, vol. 260(C).
    6. Fikrt, André & Brehmer, Richard & Milella, Vito-Oronzo & Müller, Karsten & Bösmann, Andreas & Preuster, Patrick & Alt, Nicolas & Schlücker, Eberhard & Wasserscheid, Peter & Arlt, Wolfgang, 2017. "Dynamic power supply by hydrogen bound to a liquid organic hydrogen carrier," Applied Energy, Elsevier, vol. 194(C), pages 1-8.
    7. Cha, Junyoung & Jo, Young Suk & Jeong, Hyangsoo & Han, Jonghee & Nam, Suk Woo & Song, Kwang Ho & Yoon, Chang Won, 2018. "Ammonia as an efficient COX-free hydrogen carrier: Fundamentals and feasibility analyses for fuel cell applications," Applied Energy, Elsevier, vol. 224(C), pages 194-204.
    8. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    9. Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
    10. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erin van Rheenen & Evelien Scheffers & Jesper Zwaginga & Klaas Visser, 2023. "Hazard Identification of Hydrogen-Based Alternative Fuels Onboard Ships," Sustainability, MDPI, vol. 15(24), pages 1-21, December.
    2. Cha, Junyoung & Park, Yongha & Brigljević, Boris & Lee, Boreum & Lim, Dongjun & Lee, Taeho & Jeong, Hyangsoo & Kim, Yongmin & Sohn, Hyuntae & Mikulčić, Hrvoje & Lee, Kyung Moon & Nam, Dong Hoon & Lee,, 2021. "An efficient process for sustainable and scalable hydrogen production from green ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Park, Kilsu & Kim, Myoung-jin & Kwon, Soon-mo & Kang, Shinuang & Kim, Taegyu, 2023. "Performance evaluation of solid NaBH4-based hydrogen generator for fuel-cell-powered unmanned autonomous systems," Applied Energy, Elsevier, vol. 337(C).
    4. Brändle, Gregor & Schönfisch, Max & Schulte, Simon, 2021. "Estimating long-term global supply costs for low-carbon hydrogen," Applied Energy, Elsevier, vol. 302(C).
    5. Tomić, Aleksandra & Pomeroy, Brett & Todić, Branislav & Likozar, Blaž & Nikačević, Nikola, 2024. "Catalytic hydrogenation reaction micro-kinetic model for dibenzyltoluene as liquid organic hydrogen carrier," Applied Energy, Elsevier, vol. 365(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Sanghun & Kim, Taehong & Han, Gwangwoo & Kang, Sungmin & Yoo, Young-Sung & Jeon, Sang-Yun & Bae, Joongmyeon, 2021. "Comparative energetic studies on liquid organic hydrogen carrier: A net energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Runge, Philipp & Sölch, Christian & Albert, Jakob & Wasserscheid, Peter & Zöttl, Gregor & Grimm, Veronika, 2019. "Economic comparison of different electric fuels for energy scenarios in 2035," Applied Energy, Elsevier, vol. 233, pages 1078-1093.
    3. Kirchem, Dana & Schill, Wolf-Peter, 2023. "Power sector effects of green hydrogen production in Germany," Energy Policy, Elsevier, vol. 182(C).
    4. Egerer, Jonas & Grimm, Veronika & Niazmand, Kiana & Runge, Philipp, 2023. "The economics of global green ammonia trade – “Shipping Australian wind and sunshine to Germany”," Applied Energy, Elsevier, vol. 334(C).
    5. Joakim Andersson, 2021. "Application of Liquid Hydrogen Carriers in Hydrogen Steelmaking," Energies, MDPI, vol. 14(5), pages 1-26, March.
    6. Grüger, Fabian & Dylewski, Lucy & Robinius, Martin & Stolten, Detlef, 2018. "Carsharing with fuel cell vehicles: Sizing hydrogen refueling stations based on refueling behavior," Applied Energy, Elsevier, vol. 228(C), pages 1540-1549.
    7. Luo, Yu & Liao, Shuting & Chen, Shuai & Fang, Huihuang & Zhong, Fulan & Lin, Li & Zhou, Chen & Chen, Chongqi & Cai, Guohui & Au, Chak-Tong & Jiang, Lilong, 2022. "Optimized coupling of ammonia decomposition and electrochemical oxidation in a tubular direct ammonia solid oxide fuel cell for high-efficiency power generation," Applied Energy, Elsevier, vol. 307(C).
    8. Li, Yanfei & Taghizadeh-Hesary, Farhad, 2022. "The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China," Energy Policy, Elsevier, vol. 160(C).
    9. Abdulrahman Joubi & Yutaro Akimoto & Keiichi Okajima, 2022. "A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates," Energies, MDPI, vol. 15(11), pages 1-14, May.
    10. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    11. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    12. Fukunaga, Akihiko & Kato, Asami & Hara, Yuki & Matsumoto, Takaya, 2023. "Dehydrogenation of methylcyclohexane using solid oxide fuel cell – A smart energy conversion," Applied Energy, Elsevier, vol. 348(C).
    13. Stöckl, Fabian & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Optimal supply chains and power sector benefits of green hydrogen," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11.
    14. Ehrenstein, Michael & Galán-Martín, Ángel & Tulus, Victor & Guillén-Gosálbez, Gonzalo, 2020. "Optimising fuel supply chains within planetary boundaries: A case study of hydrogen for road transport in the UK," Applied Energy, Elsevier, vol. 276(C).
    15. Yunesky Masip Macía & Pablo Rodríguez Machuca & Angel Alexander Rodríguez Soto & Roberto Carmona Campos, 2021. "Green Hydrogen Value Chain in the Sustainability for Port Operations: Case Study in the Region of Valparaiso, Chile," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    16. Frederik vom Scheidt & Jingyi Qu & Philipp Staudt & Dharik S. Mallapragada & Christof Weinhardt, 2021. "Integrating Hydrogen in Single-Price Electricity Systems: The Effects of Spatial Economic Signals," Papers 2105.00130, arXiv.org, revised Nov 2021.
    17. Olfa Tlili & Christine Mansilla & Jochen Linβen & Markus Reuss & Thomas Grube & Martin Robinius & Jean André & Yannick Perez & Alain Le Duigou & Detlef Stolten, 2020. "Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains," Post-Print hal-02421359, HAL.
    18. Forghani, Kamran & Kia, Reza & Nejatbakhsh, Yousef, 2023. "A multi-period sustainable hydrogen supply chain model considering pipeline routing and carbon emissions: The case study of Oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    19. Markus Reuß & Paris Dimos & Aline Léon & Thomas Grube & Martin Robinius & Detlef Stolten, 2021. "Hydrogen Road Transport Analysis in the Energy System: A Case Study for Germany through 2050," Energies, MDPI, vol. 14(11), pages 1-17, May.
    20. Guo, Zhongjie & Wei, Wei & Chen, Laijun & Zhang, Xiaoping & Mei, Shengwei, 2021. "Equilibrium model of a regional hydrogen market with renewable energy based suppliers and transportation costs," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:274:y:2020:i:c:s0306261920308266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.