IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v298y2024ics0360544224011770.html
   My bibliography  Save this article

Comprehensive investigation of the electro-thermal performance and heat transfer mechanism of battery system under forced flow immersion cooling

Author

Listed:
  • Liu, Qian
  • Liu, Yingying
  • Zhang, Mingjie
  • Wang, Shuping
  • Li, Wenlong
  • Zhu, Xiaoqing
  • Ju, Xing
  • Xu, Chao
  • Wei, Bin

Abstract

Efficient cooling during rapid battery charging/discharging necessitates forced circulating flow in immersion cooling systems. However, under forced flow immersion cooling (FFIC), the comprehensive impact on the electrical and thermal performance of battery modules remains inadequately explored. This study constructs an immersion-cooled battery module test platform for experimental research on the evolution of electrical and thermal characteristics. The results show that under FFIC, when the depth of discharge (DOD) during 2C and 3C discharges is below 85 %, the voltage deviation of module (δU,t) remains stable within 1 % and 2 %, respectively. At DOD of 100 %, the maximum δU,t for 2C and 3C are 10 % and 24.5 %, respectively. Furthermore, the analysis of Pearson correlation coefficient under FFIC reveals that the δU,t exhibits a very strong positive correlation with temperature difference of battery module and cell, with correlation coefficients of +0.94 and + 0.87, respectively. Higher flow rates accelerate the recovery of module temperature and facilitate voltage distribution equalization after discharge. Additionally, to elucidate the influence of flow rate on FFIC, module-scale heat transfer characteristics during battery discharge are theoretically analyzed, establishing a fitting relationship between C-rates, flow rates, and the Nusselt number (Nu). This study provides a comprehensive understanding of integrated electro-thermal performance and external heat transfer capability for flow regulation in immersion cooling.

Suggested Citation

  • Liu, Qian & Liu, Yingying & Zhang, Mingjie & Wang, Shuping & Li, Wenlong & Zhu, Xiaoqing & Ju, Xing & Xu, Chao & Wei, Bin, 2024. "Comprehensive investigation of the electro-thermal performance and heat transfer mechanism of battery system under forced flow immersion cooling," Energy, Elsevier, vol. 298(C).
  • Handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011770
    DOI: 10.1016/j.energy.2024.131404
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    2. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    3. Liu, Jiahao & Chen, Hao & Yang, Manjiang & Huang, Silu & Wang, Kan, 2024. "Comparative study of natural ester oil and mineral oil on the applicability of the immersion cooling for a battery module," Renewable Energy, Elsevier, vol. 224(C).
    4. Shan, Shuai & Li, Li & Xu, Qiang & Ling, Lei & Xie, Yajun & Wang, Hongkang & Zheng, Keqing & Zhang, Lanchun & Bei, Shaoyi, 2023. "Numerical investigation of a compact and lightweight thermal management system with axially mounted cooling tubes for cylindrical lithium-ion battery module," Energy, Elsevier, vol. 274(C).
    5. Kim, Kyunghyun & Choi, Jung-Il, 2023. "Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems," Applied Energy, Elsevier, vol. 352(C).
    6. Chen, Jie & Ren, Dongsheng & Hsu, Hungjen & Wang, Li & He, Xiangming & Zhang, Caiping & Feng, Xuning & Ouyang, Minggao, 2021. "Investigating the thermal runaway features of lithium-ion batteries using a thermal resistance network model," Applied Energy, Elsevier, vol. 295(C).
    7. Prahit Dubey & Gautam Pulugundla & A. K. Srouji, 2021. "Direct Comparison of Immersion and Cold-Plate Based Cooling for Automotive Li-Ion Battery Modules," Energies, MDPI, vol. 14(5), pages 1-19, February.
    8. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    11. Liu, Qian & Sun, Chen & Zhang, Jingshu & Shi, Qianlei & Li, Kaixuan & Yu, Boxu & Xu, Chao & Ju, Xing, 2023. "The electro-thermal equalization behaviors of battery modules with immersion cooling," Applied Energy, Elsevier, vol. 351(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Jing & Zuo, Wei & E, Jiaqiang & Zhang, Yuntian & Li, Qingqing & Sun, Ke & Zhou, Kun & Zhang, Guangde, 2022. "Multi-objective optimization of mini U-channel cold plate with SiO2 nanofluid by RSM and NSGA-II," Energy, Elsevier, vol. 242(C).
    2. Mousavi, Sepehr & Zadehkabir, Amirhosein & Siavashi, Majid & Yang, Xiaohu, 2023. "An improved hybrid thermal management system for prismatic Li-ion batteries integrated with mini-channel and phase change materials," Applied Energy, Elsevier, vol. 334(C).
    3. Luo, Jie & Gu, Heng & Wang, Shuo & Wang, Hao & Zou, Deqiu, 2022. "A coupled power battery cooling system based on phase change material and its influencing factors," Applied Energy, Elsevier, vol. 326(C).
    4. Huang, Chu & Zhu, Haixi & Ma, Yinjie & E, Jiaqiang, 2023. "Evaluation of lithium battery immersion thermal management using a novel pentaerythritol ester coolant," Energy, Elsevier, vol. 284(C).
    5. Fan, Wenjun & Zhu, Jiangong & Qiao, Dongdong & Jiang, Bo & Wang, Xueyuan & Wei, Xuezhe & Dai, Haifeng, 2024. "Prediction of nonlinear degradation knee-point and remaining useful life for lithium-ion batteries using relaxation voltage," Energy, Elsevier, vol. 294(C).
    6. Mohammed, Abubakar Gambo & Elfeky, Karem Elsayed & Wang, Qiuwang, 2022. "Recent advancement and enhanced battery performance using phase change materials based hybrid battery thermal management for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Cui, Binghan & Wang, Han & Li, Renlong & Xiang, Lizhi & Zhao, Huaian & Xiao, Rang & Li, Sai & Liu, Zheng & Yin, Geping & Cheng, Xinqun & Ma, Yulin & Huo, Hua & Zuo, Pengjian & Lu, Taolin & Xie, Jingyi, 2024. "Ultra-early prediction of lithium-ion battery performance using mechanism and data-driven fusion model," Applied Energy, Elsevier, vol. 353(PA).
    8. Liu, Jiahao & Fan, Yining & Wang, Jinhui & Tao, Changfa & Chen, Mingyi, 2022. "A model-scale experimental and theoretical study on a mineral oil-immersed battery cooling system," Renewable Energy, Elsevier, vol. 201(P1), pages 712-723.
    9. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Ling, Ziye & Wang, Fangxian & Fang, Xiaoming & Gao, Xuenong & Zhang, Zhengguo, 2015. "A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling," Applied Energy, Elsevier, vol. 148(C), pages 403-409.
    11. Chen, Ruihua & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Xu, Weicong, 2021. "A cycle research methodology for thermo-chemical engines: From ideal cycle to case study," Energy, Elsevier, vol. 228(C).
    12. Zhou, Zhizuan & Wang, Dong & Peng, Yang & Li, Maoyu & Wang, Boxuan & Cao, Bei & Yang, Lizhong, 2022. "Experimental study on the thermal management performance of phase change material module for the large format prismatic lithium-ion battery," Energy, Elsevier, vol. 238(PC).
    13. Bamdezh, M.A. & Molaeimanesh, G.R., 2024. "The effect of active and passive battery thermal management systems on energy consumption, battery degradation, and carbon emissions of an electric vehicle," Energy, Elsevier, vol. 304(C).
    14. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    15. Wang, Gongquan & Kong, Depeng & Ping, Ping & He, Xiaoqin & Lv, Hongpeng & Zhao, Hengle & Hong, Wanru, 2023. "Modeling venting behavior of lithium-ion batteries during thermal runaway propagation by coupling CFD and thermal resistance network," Applied Energy, Elsevier, vol. 334(C).
    16. Zhang, Yue & Song, Laifeng & Tian, Jiamin & Mei, Wenxin & Jiang, Lihua & Sun, Jinhua & Wang, Qingsong, 2024. "Modeling the propagation of internal thermal runaway in lithium-ion battery," Applied Energy, Elsevier, vol. 362(C).
    17. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    18. Zhang, Zhenying & Wang, Jiayu & Feng, Xu & Chang, Li & Chen, Yanhua & Wang, Xingguo, 2018. "The solutions to electric vehicle air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 443-463.
    19. Wei, Gang & Huang, Ranjun & Zhang, Guangxu & Jiang, Bo & Zhu, Jiangong & Guo, Yangyang & Han, Guangshuai & Wei, Xuezhe & Dai, Haifeng, 2023. "A comprehensive insight into the thermal runaway issues in the view of lithium-ion battery intrinsic safety performance and venting gas explosion hazards," Applied Energy, Elsevier, vol. 349(C).
    20. Kim, Kyunghyun & Choi, Jung-Il, 2023. "Effect of cell-to-cell variation and module configuration on the performance of lithium-ion battery systems," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:298:y:2024:i:c:s0360544224011770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.