IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p1213-d504665.html
   My bibliography  Save this article

Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm

Author

Listed:
  • Ahmed Aljanad

    (Department of Science, Technology, Engineering and Mathematics, American University of Afghanistan, Darul Aman 4001, Kabul, Afghanistan
    Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • Nadia M. L. Tan

    (Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia)

  • Vassilios G. Agelidis

    (Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia
    Department of Electrical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark)

  • Hussain Shareef

    (Department of Electrical Engineering, United Arab Emirates University, Al Ain 15551, Abu Dhabi, United Arab Emirates)

Abstract

Hourly global solar irradiance (GSR) data are required for sizing, planning, and modeling of solar photovoltaic farms. However, operating and controlling such farms exposed to varying environmental conditions, such as fast passing clouds, necessitates GSR data to be available for very short time intervals. Classical backpropagation neural networks do not perform satisfactorily when predicting parameters within short intervals. This paper proposes a hybrid backpropagation neural networks based on particle swarm optimization. The particle swarm algorithm is used as an optimization algorithm within the backpropagation neural networks to optimize the number of hidden layers and neurons used and its learning rate. The proposed model can be used as a reliable model in predicting changes in the solar irradiance during short time interval in tropical regions such as Malaysia and other regions. Actual global solar irradiance data of 5-s and 1-min intervals, recorded by weather stations, are applied to train and test the proposed algorithm. Moreover, to ensure the adaptability and robustness of the proposed technique, two different cases are evaluated using 1-day and 3-days profiles, for two different time intervals of 1-min and 5-s each. A set of statistical error indices have been introduced to evaluate the performance of the proposed algorithm. From the results obtained, the 3-days profile’s performance evaluation of the BPNN-PSO are 1.7078 of RMSE, 0.7537 of MAE, 0.0292 of MSE, and 31.4348 of MAPE (%), at 5-s time interval, where the obtained results of 1-min interval are 0.6566 of RMSE, 0.2754 of MAE, 0.0043 of MSE, and 1.4732 of MAPE (%). The results revealed that proposed model outperformed the standalone backpropagation neural networks method in predicting global solar irradiance values for extremely short-time intervals. In addition to that, the proposed model exhibited high level of predictability compared to other existing models.

Suggested Citation

  • Ahmed Aljanad & Nadia M. L. Tan & Vassilios G. Agelidis & Hussain Shareef, 2021. "Neural Network Approach for Global Solar Irradiance Prediction at Extremely Short-Time-Intervals Using Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 14(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1213-:d:504665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/1213/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/1213/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    2. Zou, Ling & Wang, Lunche & Xia, Li & Lin, Aiwen & Hu, Bo & Zhu, Hongji, 2017. "Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro-Fuzzy Inference Systems," Renewable Energy, Elsevier, vol. 106(C), pages 343-353.
    3. Zhenyu Wang & Cuixia Tian & Qibing Zhu & Min Huang, 2018. "Hourly Solar Radiation Forecasting Using a Volterra-Least Squares Support Vector Machine Model Combined with Signal Decomposition," Energies, MDPI, vol. 11(1), pages 1-21, January.
    4. Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
    5. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    6. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2019. "Estimation and validation of daily global solar radiation by day of the year-based models for different climates in China," Renewable Energy, Elsevier, vol. 135(C), pages 984-1003.
    7. Hocaoglu, Fatih Onur & Serttas, Fatih, 2017. "A novel hybrid (Mycielski-Markov) model for hourly solar radiation forecasting," Renewable Energy, Elsevier, vol. 108(C), pages 635-643.
    8. Halabi, Laith M. & Mekhilef, Saad & Hossain, Monowar, 2018. "Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation," Applied Energy, Elsevier, vol. 213(C), pages 247-261.
    9. Sujan Ghimire & Ravinesh C Deo & Nawin Raj & Jianchun Mi, 2019. "Deep Learning Neural Networks Trained with MODIS Satellite-Derived Predictors for Long-Term Global Solar Radiation Prediction," Energies, MDPI, vol. 12(12), pages 1-39, June.
    10. Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2019. "Accuracy Enhancement for Zone Mapping of a Solar Radiation Forecasting Based Multi-Objective Model for Better Management of the Generation of Renewable Energy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    11. Hamidreza Ghazvinian & Sayed-Farhad Mousavi & Hojat Karami & Saeed Farzin & Mohammad Ehteram & Md Shabbir Hossain & Chow Ming Fai & Huzaifa Bin Hashim & Vijay P Singh & Faizah Che Ros & Ali Najah Ahme, 2019. "Integrated support vector regression and an improved particle swarm optimization-based model for solar radiation prediction," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-24, May.
    12. Mohammad Mehdi Lotfinejad & Reza Hafezi & Majid Khanali & Seyed Sina Hosseini & Mehdi Mehrpooya & Shahaboddin Shamshirband, 2018. "A Comparative Assessment of Predicting Daily Solar Radiation Using Bat Neural Network (BNN), Generalized Regression Neural Network (GRNN), and Neuro-Fuzzy (NF) System: A Case Study," Energies, MDPI, vol. 11(5), pages 1-15, May.
    13. Meenal, R. & Selvakumar, A. Immanuel, 2018. "Assessment of SVM, empirical and ANN based solar radiation prediction models with most influencing input parameters," Renewable Energy, Elsevier, vol. 121(C), pages 324-343.
    14. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sameh Mahjoub & Sami Labdai & Larbi Chrifi-Alaoui & Bruno Marhic & Laurent Delahoche, 2023. "Short-Term Occupancy Forecasting for a Smart Home Using Optimized Weight Updates Based on GA and PSO Algorithms for an LSTM Network," Energies, MDPI, vol. 16(4), pages 1-18, February.
    2. Huang, Xiaoqiao & Liu, Jun & Xu, Shaozhen & Li, Chengli & Li, Qiong & Tai, Yonghang, 2023. "A 3D ConvLSTM-CNN network based on multi-channel color extraction for ultra-short-term solar irradiance forecasting," Energy, Elsevier, vol. 272(C).
    3. Yuan-Kang Wu & Cheng-Liang Huang & Quoc-Thang Phan & Yuan-Yao Li, 2022. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints," Energies, MDPI, vol. 15(9), pages 1-22, May.
    4. Faisal Nawab & Ag Sufiyan Abd Hamid & Ali Alwaeli & Muhammad Arif & Mohd Faizal Fauzan & Adnan Ibrahim, 2022. "Evaluation of Artificial Neural Networks with Satellite Data Inputs for Daily, Monthly, and Yearly Solar Irradiation Prediction for Pakistan," Sustainability, MDPI, vol. 14(13), pages 1-20, June.
    5. Monirul Islam Miskat & Protap Sarker & Hemal Chowdhury & Tamal Chowdhury & Md Salman Rahman & Nazia Hossain & Piyal Chowdhury & Sadiq M. Sait, 2023. "Current Scenario of Solar Energy Applications in Bangladesh: Techno-Economic Perspective, Policy Implementation, and Possibility of the Integration of Artificial Intelligence," Energies, MDPI, vol. 16(3), pages 1-27, February.
    6. Sahraei, Mohammad Ali & Çodur, Merve Kayaci, 2022. "Prediction of transportation energy demand by novel hybrid meta-heuristic ANN," Energy, Elsevier, vol. 249(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Yunbo & Wang, Lunche & Zhu, Canming & Zou, Ling & Zhang, Ming & Feng, Lan & Cao, Qian, 2023. "Predicting surface solar radiation using a hybrid radiative Transfer–Machine learning model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    2. Feng, Yu & Hao, Weiping & Li, Haoru & Cui, Ningbo & Gong, Daozhi & Gao, Lili, 2020. "Machine learning models to quantify and map daily global solar radiation and photovoltaic power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    3. Fan, Junliang & Wu, Lifeng & Zhang, Fucang & Cai, Huanjie & Zeng, Wenzhi & Wang, Xiukang & Zou, Haiyang, 2019. "Empirical and machine learning models for predicting daily global solar radiation from sunshine duration: A review and case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 186-212.
    4. Zang, Haixiang & Cheng, Lilin & Ding, Tao & Cheung, Kwok W. & Wang, Miaomiao & Wei, Zhinong & Sun, Guoqiang, 2020. "Application of functional deep belief network for estimating daily global solar radiation: A case study in China," Energy, Elsevier, vol. 191(C).
    5. Ağbulut, Ümit & Gürel, Ali Etem & Biçen, Yunus, 2021. "Prediction of daily global solar radiation using different machine learning algorithms: Evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Liu, Yanfeng & Zhou, Yong & Chen, Yaowen & Wang, Dengjia & Wang, Yingying & Zhu, Ying, 2020. "Comparison of support vector machine and copula-based nonlinear quantile regression for estimating the daily diffuse solar radiation: A case study in China," Renewable Energy, Elsevier, vol. 146(C), pages 1101-1112.
    7. Mohammad Ehteram & Ali Najah Ahmed & Chow Ming Fai & Haitham Abdulmohsin Afan & Ahmed El-Shafie, 2019. "Accuracy Enhancement for Zone Mapping of a Solar Radiation Forecasting Based Multi-Objective Model for Better Management of the Generation of Renewable Energy," Energies, MDPI, vol. 12(14), pages 1-26, July.
    8. Olubayo M. Babatunde & Josiah L. Munda & Yskandar Hamam, 2020. "Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation," Energies, MDPI, vol. 13(10), pages 1-18, May.
    9. Liu, Fa & Wang, Xunming & Sun, Fubao & Wang, Hong, 2022. "Correct and remap solar radiation and photovoltaic power in China based on machine learning models," Applied Energy, Elsevier, vol. 312(C).
    10. Bellido-Jiménez, Juan Antonio & Estévez Gualda, Javier & García-Marín, Amanda Penélope, 2021. "Assessing new intra-daily temperature-based machine learning models to outperform solar radiation predictions in different conditions," Applied Energy, Elsevier, vol. 298(C).
    11. Zhigao Zhou & Aiwen Lin & Lijie He & Lunche Wang, 2022. "Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China," Energies, MDPI, vol. 15(9), pages 1-23, May.
    12. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    13. Song, Zhe & Cao, Sunliang & Yang, Hongxing, 2024. "An interpretable framework for modeling global solar radiation using tree-based ensemble machine learning and Shapley additive explanations methods," Applied Energy, Elsevier, vol. 364(C).
    14. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    15. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
    16. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    17. Ben Ammar, Rim & Ben Ammar, Mohsen & Oualha, Abdelmajid, 2020. "Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems," Renewable Energy, Elsevier, vol. 153(C), pages 1016-1028.
    18. Martins, Guilherme Santos & Giesbrecht, Mateus, 2021. "Clearness index forecasting: A comparative study between a stochastic realization method and a machine learning algorithm," Renewable Energy, Elsevier, vol. 180(C), pages 787-805.
    19. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    20. Mohamed A. Ali & Ashraf Elsayed & Islam Elkabani & Mohammad Akrami & M. Elsayed Youssef & Gasser E. Hassan, 2023. "Optimizing Artificial Neural Networks for the Accurate Prediction of Global Solar Radiation: A Performance Comparison with Conventional Methods," Energies, MDPI, vol. 16(17), pages 1-30, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1213-:d:504665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.