IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8167-d695832.html
   My bibliography  Save this article

Effect of the Presence of HCl on Simultaneous CO 2 Capture and Contaminants Removal from Simulated Biomass Gasification Producer Gas by CaO-Fe 2 O 3 Sorbent in Calcium Looping Cycles

Author

Listed:
  • Forogh Dashtestani

    (Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand)

  • Mohammad Nusheh

    (Hot Lime Labs, Lower Hutt 5040, New Zealand)

  • Vilailuck Siriwongrungson

    (College of Advanced Manufacturing Innovation, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand)

  • Janjira Hongrapipat

    (Gussing Renewable Energy (Thailand) Co., Ltd., Bangkok 10500, Thailand)

  • Vlatko Materic

    (Hot Lime Labs, Lower Hutt 5040, New Zealand)

  • Alex C. K. Yip

    (Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand)

  • Shusheng Pang

    (Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8041, New Zealand)

Abstract

This study investigated the effect of HCl in biomass gasification producer gas on the CO 2 capture efficiency and contaminants removal efficiency by CaO-Fe 2 O 3 based sorbent material in the calcium looping process. Experiments were conducted in a fixed bed reactor to capture CO 2 from the producer gas with the combined contaminants of HCl at 200 ppmv, H 2 S at 230 ppmv, and NH 3 at 2300 ppmv. The results show that with presence of HCl in the feeding gas, sorbent reactivity for CO 2 capture and contaminants removal was enhanced. The maximum CO 2 capture was achieved at carbonation temperatures of 680 °C, with efficiencies of 93%, 92%, and 87%, respectively, for three carbonation-calcination cycles. At this carbonation temperature, the average contaminant removal efficiencies were 92.7% for HCl, 99% for NH 3 , and 94.7% for H 2 S. The outlet contaminant concentrations during the calcination process were also examined which is useful for CO 2 reuse. The pore structure change of the used sorbent material suggests that the HCl in the feeding gas contributes to high CO 2 capture efficiency and contaminants removal simultaneously.

Suggested Citation

  • Forogh Dashtestani & Mohammad Nusheh & Vilailuck Siriwongrungson & Janjira Hongrapipat & Vlatko Materic & Alex C. K. Yip & Shusheng Pang, 2021. "Effect of the Presence of HCl on Simultaneous CO 2 Capture and Contaminants Removal from Simulated Biomass Gasification Producer Gas by CaO-Fe 2 O 3 Sorbent in Calcium Looping Cycles," Energies, MDPI, vol. 14(23), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8167-:d:695832
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8167/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8167/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Wenjing & Li, Yingjie & Xie, Xin & Sun, Rongyue, 2014. "Effect of the presence of HCl on cyclic CO2 capture of calcium-based sorbent in calcium looping process," Applied Energy, Elsevier, vol. 125(C), pages 246-253.
    2. Guillermo Martinez Castilla & Diana Carolina Guío-Pérez & Stavros Papadokonstantakis & David Pallarès & Filip Johnsson, 2021. "Techno-Economic Assessment of Calcium Looping for Thermochemical Energy Storage with CO 2 Capture," Energies, MDPI, vol. 14(11), pages 1-17, May.
    3. Perejón, Antonio & Romeo, Luis M. & Lara, Yolanda & Lisbona, Pilar & Martínez, Ana & Valverde, Jose Manuel, 2016. "The Calcium-Looping technology for CO2 capture: On the important roles of energy integration and sorbent behavior," Applied Energy, Elsevier, vol. 162(C), pages 787-807.
    4. Erans, María & Manovic, Vasilije & Anthony, Edward J., 2016. "Calcium looping sorbents for CO2 capture," Applied Energy, Elsevier, vol. 180(C), pages 722-742.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    2. Chi, Changyun & Li, Yingjie & Zhang, Wan & Wang, Zeyan, 2019. "Synthesis of a hollow microtubular Ca/Al sorbent with high CO2 uptake by hard templating," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Antonio Coppola & Fabrizio Scala, 2020. "A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO 2 and SO 2 from a Coal-Based Combustion Power Plant," Energies, MDPI, vol. 13(9), pages 1-9, May.
    4. Zhang, Wan & Li, Yingjie & He, Zirui & Ma, Xiaotong & Song, Haiping, 2017. "CO2 capture by carbide slag calcined under high-concentration steam and energy requirement in calcium looping conditions," Applied Energy, Elsevier, vol. 206(C), pages 869-878.
    5. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2016. "Synthesis of a highly efficient Li4SiO4 ceramic modified with a gluconic acid-based carbon coating for high-temperature CO2 capture," Applied Energy, Elsevier, vol. 183(C), pages 1418-1427.
    6. Li, Bin & Magoua Mbeugang, Christian Fabrice & Huang, Yong & Liu, Dongjing & Wang, Qian & Zhang, Shu, 2022. "A review of CaO based catalysts for tar removal during biomass gasification," Energy, Elsevier, vol. 244(PB).
    7. Alvarez Rivero, M. & Rodrigues, D. & Pinheiro, C.I.C. & Cardoso, J.P. & Mendes, L.F., 2022. "Solid–gas reactors driven by concentrated solar energy with potential application to calcium looping: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Schakel, Wouter & Hung, Christine Roxanne & Tokheim, Lars-Andre & Strømman, Anders Hammer & Worrell, Ernst & Ramírez, Andrea, 2018. "Impact of fuel selection on the environmental performance of post-combustion calcium looping applied to a cement plant," Applied Energy, Elsevier, vol. 210(C), pages 75-87.
    9. Sánchez Jiménez, Pedro E. & Perejón, Antonio & Benítez Guerrero, Mónica & Valverde, José M. & Ortiz, Carlos & Pérez Maqueda, Luis A., 2019. "High-performance and low-cost macroporous calcium oxide based materials for thermochemical energy storage in concentrated solar power plants," Applied Energy, Elsevier, vol. 235(C), pages 543-552.
    10. Shi, Jiewen & Li, Yingjie & Zhang, Qing & Ma, Xiaotong & Duan, Lunbo & Zhou, Xingang, 2017. "CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions," Applied Energy, Elsevier, vol. 203(C), pages 412-421.
    11. Qin, Changlei & Yin, Junjun & Feng, Bo & Ran, Jingyu & Zhang, Li & Manovic, Vasilije, 2016. "Modelling of the calcination behaviour of a uniformly-distributed CuO/CaCO3 particle in Ca–Cu chemical looping," Applied Energy, Elsevier, vol. 164(C), pages 400-410.
    12. Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
    13. Michalski, Sebastian & Hanak, Dawid P. & Manovic, Vasilije, 2020. "Advanced power cycles for coal-fired power plants based on calcium looping combustion: A techno-economic feasibility assessment," Applied Energy, Elsevier, vol. 269(C).
    14. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    15. Chen, Huichao & Zhang, Pingping & Duan, Yufeng & Zhao, Changsui, 2016. "Reactivity enhancement of calcium based sorbents by doped with metal oxides through the sol–gel process," Applied Energy, Elsevier, vol. 162(C), pages 390-400.
    16. Lupiáñez, Carlos & Carmen Mayoral, M. & Díez, Luis I. & Pueyo, Eloy & Espatolero, Sergio & Manuel Andrés, J., 2016. "The role of limestone during fluidized bed oxy-combustion of coal and biomass," Applied Energy, Elsevier, vol. 184(C), pages 670-680.
    17. Chen, Xiaoyi & Jin, Xiaogang & Liu, Zhimin & Ling, Xiang & Wang, Yan, 2018. "Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping," Energy, Elsevier, vol. 155(C), pages 128-138.
    18. Tian, Sicong & Li, Kaimin & Jiang, Jianguo & Chen, Xuejing & Yan, Feng, 2016. "CO2 abatement from the iron and steel industry using a combined Ca–Fe chemical loop," Applied Energy, Elsevier, vol. 170(C), pages 345-352.
    19. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
    20. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8167-:d:695832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.