IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1809-d118173.html
   My bibliography  Save this article

Identification of Combined Power Quality Disturbances Using Singular Value Decomposition (SVD) and Total Least Squares-Estimation of Signal Parameters via Rotational Invariance Techniques (TLS-ESPRIT)

Author

Listed:
  • Huaishuo Xiao

    (Department of Electrical Engineering, Shandong University, Jinan 250061, China
    Shandong Provincial Key Laboratory of UHV Transmission Technology and Equipment, 17923 Jingshi Road, Jinan 250061, China)

  • Jianchun Wei

    (Department of Electrical Engineering, Shandong University, Jinan 250061, China
    Shandong Provincial Key Laboratory of UHV Transmission Technology and Equipment, 17923 Jingshi Road, Jinan 250061, China)

  • Qingquan Li

    (Department of Electrical Engineering, Shandong University, Jinan 250061, China
    Shandong Provincial Key Laboratory of UHV Transmission Technology and Equipment, 17923 Jingshi Road, Jinan 250061, China)

Abstract

In order to identify various kinds of combined power quality disturbances, the singular value decomposition (SVD) and the improved total least squares-estimation of signal parameters via rotational invariance techniques (TLS-ESPRIT) are combined as the basis of disturbance identification in this paper. SVD is applied to identify the catastrophe points of disturbance intervals, based on which the disturbance intervals are segmented. Then the improved TLS-ESPRIT optimized by singular value norm method is used to analyze each data segment, and extract the amplitude, frequency, attenuation coefficient and initial phase of various kinds of disturbances. Multi-group combined disturbance test signals are constructed by MATLAB and the proposed method is also tested by the measured data of IEEE Power and Energy Society (PES) Database. The test results show that the new method proposed has a relatively higher accuracy than conventional TLS-ESPRIT, which could be used in the identification of measured data.

Suggested Citation

  • Huaishuo Xiao & Jianchun Wei & Qingquan Li, 2017. "Identification of Combined Power Quality Disturbances Using Singular Value Decomposition (SVD) and Total Least Squares-Estimation of Signal Parameters via Rotational Invariance Techniques (TLS-ESPRIT)," Energies, MDPI, vol. 10(11), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1809-:d:118173
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1809/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kewei Cai & Belema Prince Alalibo & Wenping Cao & Zheng Liu & Zhiqiang Wang & Guofeng Li, 2018. "Hybrid Approach for Detecting and Classifying Power Quality Disturbances Based on the Variational Mode Decomposition and Deep Stochastic Configuration Network," Energies, MDPI, vol. 11(11), pages 1-18, November.
    2. Raoult Teukam Dabou & Innocent Kamwa & Jacques Tagoudjeu & Francis Chuma Mugombozi, 2021. "Sparse Signal Reconstruction on Fixed and Adaptive Supervised Dictionary Learning for Transient Stability Assessment," Energies, MDPI, vol. 14(23), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1809-:d:118173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.