A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
- Pathan, Refat Khan & Biswas, Munmun & Khandaker, Mayeen Uddin, 2020. "Time series prediction of COVID-19 by mutation rate analysis using recurrent neural network-based LSTM model," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
- Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
- Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
- Richard Guanoluisa & Diego Arcos-Aviles & Marco Flores-Calero & Wilmar Martinez & Francesc Guinjoan, 2023. "Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
- Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
- Guillermo Almonacid-Olleros & Gabino Almonacid & David Gil & Javier Medina-Quero, 2022. "Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
- Shriram S. Rangarajan & Chandan Kumar Shiva & AVV Sudhakar & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2023. "Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid," Energies, MDPI, vol. 16(3), pages 1-30, January.
- Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
- Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
- Kafieh, Rahele & Saeedizadeh, Narges & Arian, Roya & Amini, Zahra & Serej, Nasim Dadashi & Vaezi, Atefeh & Javanmard, Shaghayegh Haghjooy, 2020. "Isfahan and Covid-19: Deep spatiotemporal representation," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
- Sourav Malakar & Saptarsi Goswami & Bhaswati Ganguli & Amlan Chakrabarti & Sugata Sen Roy & K. Boopathi & A. G. Rangaraj, 2022. "Deep-Learning-Based Adaptive Model for Solar Forecasting Using Clustering," Energies, MDPI, vol. 15(10), pages 1-16, May.
- Cheng-Hong Yang & Bo-Hong Chen & Chih-Hsien Wu & Kuo-Chang Chen & Li-Yeh Chuang, 2022. "Deep Learning for Forecasting Electricity Demand in Taiwan," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
- Iqra Mehmood & Munazza Ijaz & Sajjad Ahmad & Temoor Ahmed & Amna Bari & Asma Abro & Khaled S. Allemailem & Ahmad Almatroudi & Muhammad Tahir ul Qamar, 2021. "SARS-CoV-2: An Update on Genomics, Risk Assessment, Potential Therapeutics and Vaccine Development," IJERPH, MDPI, vol. 18(4), pages 1-23, February.
- Nguyen, Thi Ngoc & Müsgens, Felix, 2022. "What drives the accuracy of PV output forecasts?," Applied Energy, Elsevier, vol. 323(C).
- Lillo, Fabrizio & Livieri, Giulia & Marmi, Stefano & Solomko, Anton & Vaienti, Sandro, 2023. "Analysis of bank leverage via dynamical systems and deep neural networks," LSE Research Online Documents on Economics 119917, London School of Economics and Political Science, LSE Library.
- Raihan Kamil & Pranda M. P. Garniwa & Hyunjin Lee, 2021. "Performance Assessment of Global Horizontal Irradiance Models in All-Sky Conditions," Energies, MDPI, vol. 14(23), pages 1-20, November.
- Kazmi, Hussain & Tao, Zhenmin, 2022. "How good are TSO load and renewable generation forecasts: Learning curves, challenges, and the road ahead," Applied Energy, Elsevier, vol. 323(C).
- Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
- Wilson Castillo-Rojas & Fernando Medina Quispe & César Hernández, 2023. "Photovoltaic Energy Forecast Using Weather Data through a Hybrid Model of Recurrent and Shallow Neural Networks," Energies, MDPI, vol. 16(13), pages 1-25, July.
- Tiago Pinto, 2023. "Artificial Intelligence as a Booster of Future Power Systems," Energies, MDPI, vol. 16(5), pages 1-4, February.
More about this item
Keywords
hazard mitigation; machine learning; geothermal reservoirs; neural networks; InSAR;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:1977-:d:1268031. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.