IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12151-d1213198.html
   My bibliography  Save this article

Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands

Author

Listed:
  • Richard Guanoluisa

    (Grupo de Investigación en Propagación, Control Electrónico y Networking (PROCONET), Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador)

  • Diego Arcos-Aviles

    (Grupo de Investigación en Propagación, Control Electrónico y Networking (PROCONET), Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador)

  • Marco Flores-Calero

    (Grupo de Investigación en Propagación, Control Electrónico y Networking (PROCONET), Departamento de Eléctrica, Electrónica y Telecomunicaciones, Universidad de las Fuerzas Armadas ESPE, Av. General Rumiñahui s/n, Sangolquí 171-5-231B, Ecuador)

  • Wilmar Martinez

    (Department of Electrical Engineering, ESAT, KU Leuven, Agoralaan gebouw B bus 8, 3590 Diepenbeek, Belgium
    EnergyVille-Thor Park 8310, 3600 Genk, Belgium)

  • Francesc Guinjoan

    (Department of Electronics Engineering, Escuela Técnica Superior de Ingenieros de Telecomunicación de Barcelona, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain)

Abstract

Hydropower systems are the basis of electricity power generation in Ecuador. However, some isolated areas in the Amazon and Galapagos Islands are not connected to the National Interconnected System. Therefore, isolated generation systems based on renewable energy sources (RES) emerge as a solution to increase electricity coverage in these areas. An extraordinary case occurs in the Galapagos Islands due to their biodiversity in flora and fauna, where the primary energy source comes from fossil fuels despite their significant amount of solar resources. Therefore, RES use, especially photovoltaic (PV) and wind power, is essential to cover the required load demand without negatively affecting the islands’ biodiversity. In this regard, the design and installation planning of PV systems require perfect knowledge of the amount of energy available at a given location, where power forecasting plays a fundamental role. Therefore, this paper presents the design and comparison of different deep learning techniques: long-short-term memory (LSTM), LSTM Projected, Bidirectional LSTM, Gated Recurrent Units, Convolutional Neural Networks, and hybrid models to forecast photovoltaic power generation in the Galapagos Islands of Ecuador. The proposed approach uses an optimized hyperparameter-based Bayesian optimization algorithm to reduce the forecast error and training time. The results demonstrate the accurate performance of all the methods by achieving a low-error short-term prediction, an excellent correlation of over 99%, and minimizing the training time.

Suggested Citation

  • Richard Guanoluisa & Diego Arcos-Aviles & Marco Flores-Calero & Wilmar Martinez & Francesc Guinjoan, 2023. "Photovoltaic Power Forecast Using Deep Learning Techniques with Hyperparameters Based on Bayesian Optimization: A Case Study in the Galapagos Islands," Sustainability, MDPI, vol. 15(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12151-:d:1213198
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12151/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12151/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houssem Ben Aribia & Ali M. El-Rifaie & Mohamed A. Tolba & Abdullah Shaheen & Ghareeb Moustafa & Fahmi Elsayed & Mostafa Elshahed, 2023. "Growth Optimizer for Parameter Identification of Solar Photovoltaic Cells and Modules," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    2. Vishnu Suresh & Przemyslaw Janik & Jacek Rezmer & Zbigniew Leonowicz, 2020. "Forecasting Solar PV Output Using Convolutional Neural Networks with a Sliding Window Algorithm," Energies, MDPI, vol. 13(3), pages 1-15, February.
    3. Rial A. Rajagukguk & Raden A. A. Ramadhan & Hyun-Jin Lee, 2020. "A Review on Deep Learning Models for Forecasting Time Series Data of Solar Irradiance and Photovoltaic Power," Energies, MDPI, vol. 13(24), pages 1-23, December.
    4. Rodríguez, Fermín & Galarza, Ainhoa & Vasquez, Juan C. & Guerrero, Josep M., 2022. "Using deep learning and meteorological parameters to forecast the photovoltaic generators intra-hour output power interval for smart grid control," Energy, Elsevier, vol. 239(PB).
    5. Mostafa Elshahed & Ali M. El-Rifaie & Mohamed A. Tolba & Ahmed Ginidi & Abdullah Shaheen & Shazly A. Mohamed, 2022. "An Innovative Hunter-Prey-Based Optimization for Electrically Based Single-, Double-, and Triple-Diode Models of Solar Photovoltaic Systems," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
    6. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    7. Rodriguez, Mauricio & Arcos–Aviles, Diego & Martinez, Wilmar, 2023. "Fuzzy logic-based energy management for isolated microgrid using meta-heuristic optimization algorithms," Applied Energy, Elsevier, vol. 335(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
    2. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    3. Shufu Yuan & Yuzhang Ji & Yongxu Chen & Xin Liu & Weijun Zhang, 2023. "An Improved Differential Evolution for Parameter Identification of Photovoltaic Models," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    4. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    5. Sergio Cantillo-Luna & Ricardo Moreno-Chuquen & David Celeita & George Anders, 2023. "Deep and Machine Learning Models to Forecast Photovoltaic Power Generation," Energies, MDPI, vol. 16(10), pages 1-24, May.
    6. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    7. Hasala Dharmawardena & Ganesh Kumar Venayagamoorthy, 2022. "Distributed Volt-Var Curve Optimization Using a Cellular Computational Network Representation of an Electric Power Distribution System," Energies, MDPI, vol. 15(12), pages 1-18, June.
    8. Verdone, Alessio & Scardapane, Simone & Panella, Massimo, 2024. "Explainable Spatio-Temporal Graph Neural Networks for multi-site photovoltaic energy production," Applied Energy, Elsevier, vol. 353(PB).
    9. Xiaohan Fang & Jinkuan Wang & Guanru Song & Yinghua Han & Qiang Zhao & Zhiao Cao, 2019. "Multi-Agent Reinforcement Learning Approach for Residential Microgrid Energy Scheduling," Energies, MDPI, vol. 13(1), pages 1-26, December.
    10. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    11. Joe Yazbeck & John B. Rundle, 2023. "A Fusion of Geothermal and InSAR Data with Machine Learning for Enhanced Deformation Forecasting at the Geysers," Land, MDPI, vol. 12(11), pages 1-22, October.
    12. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    13. Yongju Son & Yeunggurl Yoon & Jintae Cho & Sungyun Choi, 2022. "Cloud Cover Forecast Based on Correlation Analysis on Satellite Images for Short-Term Photovoltaic Power Forecasting," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    14. Ghareeb Moustafa & Ali M. El-Rifaie & Idris H. Smaili & Ahmed Ginidi & Abdullah M. Shaheen & Ahmed F. Youssef & Mohamed A. Tolba, 2023. "An Enhanced Dwarf Mongoose Optimization Algorithm for Solving Engineering Problems," Mathematics, MDPI, vol. 11(15), pages 1-26, July.
    15. Usman Mehmood & Ephraim Bonah Agyekum & Salman Tariq & Zia Ul Haq & Solomon Eghosa Uhunamure & Joshua Nosa Edokpayi & Ayesha Azhar, 2022. "Socio-Economic Drivers of Renewable Energy: Empirical Evidence from BRICS," IJERPH, MDPI, vol. 19(8), pages 1-10, April.
    16. Lilla Barancsuk & Veronika Groma & Dalma Günter & János Osán & Bálint Hartmann, 2024. "Estimation of Solar Irradiance Using a Neural Network Based on the Combination of Sky Camera Images and Meteorological Data," Energies, MDPI, vol. 17(2), pages 1-25, January.
    17. Guillermo Almonacid-Olleros & Gabino Almonacid & David Gil & Javier Medina-Quero, 2022. "Evaluation of Transfer Learning and Fine-Tuning to Nowcast Energy Generation of Photovoltaic Systems in Different Climates," Sustainability, MDPI, vol. 14(5), pages 1-15, March.
    18. Shriram S. Rangarajan & Chandan Kumar Shiva & AVV Sudhakar & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2023. "Avant-Garde Solar Plants with Artificial Intelligence and Moonlighting Capabilities as Smart Inverters in a Smart Grid," Energies, MDPI, vol. 16(3), pages 1-30, January.
    19. Liu, Zhengxuan & Zhou, Yuekuan & Yan, Jun & Tostado-Véliz, Marcos, 2023. "Frontier ocean thermal/power and solar PV systems for transformation towards net-zero communities," Energy, Elsevier, vol. 284(C).
    20. Umeozor, Evar Chinedu & Trifkovic, Milana, 2016. "Operational scheduling of microgrids via parametric programming," Applied Energy, Elsevier, vol. 180(C), pages 672-681.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12151-:d:1213198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.