IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p7985-d691197.html
   My bibliography  Save this article

Waste Heat Recovery by Air-to-Water Heat Pump from Exhausted Ventilating Air for Heating of Multi-Family Residential Buildings

Author

Listed:
  • Piotr Kowalski

    (Department of Air Conditioning, Heating, Gas Engineering and Air Protection, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Paweł Szałański

    (Department of Air Conditioning, Heating, Gas Engineering and Air Protection, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Wojciech Cepiński

    (Department of Air Conditioning, Heating, Gas Engineering and Air Protection, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

The paper presents an analysis of the application of an air-to-water electric compressor heat pump (AWHP) for the recovery of waste heat from the exhaust air in a typical multifamily residential building and the use of this heat for space heating, as well as the impact of this solution on the building energy performance (the PPR index). Simulations were performed in TRNSYS for five locations in Poland (Koszalin, Wrocław, Lublin, Białystok, Suwałki), for various heating system parameters (80/60 °C, 75/65 °C, 70/50 °C, 55/45 °C, 35/28 °C), for various temperature limitations of heat pump operation. It was shown that the analyzed system has great potential from an energy and environmental point of view. It can provide significant benefits in terms of the energy performance of the building, depending on the system parameters. The results show that the most energy-efficient system is the one with the lowest heating system temperatures. Moreover, implementing a temperature limitation on the heat pump operation improves its efficiency, but the higher the design parameters of the heating installation and the lower the limitation, the lower the heat pump contribution, and the higher the SCOP and the PPR . The energy effect is also influenced by location, but its scale depends on the parameters of the heating system and the temperature limitation of the heat pump’s operation. It is more significant for lower heating system parameters. This system enables the possibility of further reducing the demand for nonrenewable primary energy by powering the heat pump with photovoltaic cells.

Suggested Citation

  • Piotr Kowalski & Paweł Szałański & Wojciech Cepiński, 2021. "Waste Heat Recovery by Air-to-Water Heat Pump from Exhausted Ventilating Air for Heating of Multi-Family Residential Buildings," Energies, MDPI, vol. 14(23), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7985-:d:691197
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/7985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/7985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinshi Wang & Weiqi Liu & Guangyao Liu & Weijia Sun & Gen Li & Binbin Qiu, 2020. "Theoretical Design and Analysis of the Waste Heat Recovery System of Turbine Exhaust Steam Using an Absorption Heat Pump for Heating Supply," Energies, MDPI, vol. 13(23), pages 1-19, November.
    2. Małgorzata Szulgowska-Zgrzywa & Ewelina Stefanowicz & Krzysztof Piechurski & Agnieszka Chmielewska & Marek Kowalczyk, 2020. "Impact of Users’ Behavior and Real Weather Conditions on the Energy Consumption of Tenement Houses in Wroclaw, Poland: Energy Performance Gap Simulation Based on a Model Calibrated by Field Measuremen," Energies, MDPI, vol. 13(24), pages 1-15, December.
    3. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    4. Hee-Won Lim & Ji-Hyeon Kim & Hyeun-Seung Lee & U-Cheul Shin, 2021. "Case Study of Load Matching and Energy Cost for Net-Zero Energy Houses in Korea," Energies, MDPI, vol. 14(19), pages 1-11, October.
    5. Antonella Priarone & Federico Silenzi & Marco Fossa, 2020. "Modelling Heat Pumps with Variable EER and COP in EnergyPlus: A Case Study Applied to Ground Source and Heat Recovery Heat Pump Systems," Energies, MDPI, vol. 13(4), pages 1-22, February.
    6. Liu, Lanbin & Fu, Lin & Zhang, Shigang, 2014. "The design and analysis of two exhaust heat recovery systems for public shower facilities," Applied Energy, Elsevier, vol. 132(C), pages 267-275.
    7. Luo, Yang & Andresen, John & Clarke, Henry & Rajendra, Matthew & Maroto-Valer, Mercedes, 2019. "A decision support system for waste heat recovery and energy efficiency improvement in data centres," Applied Energy, Elsevier, vol. 250(C), pages 1217-1224.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barnaś, Krzysztof & Jeleński, Tomasz & Nowak-Ocłoń, Marzena & Racoń-Leja, Kinga & Radziszewska-Zielina, Elżbieta & Szewczyk, Bartłomiej & Śladowski, Grzegorz & Toś, Cezary & Varbanov, Petar Sabev, 2023. "Algorithm for the comprehensive thermal retrofit of housing stock aided by renewable energy supply: A sustainable case for Krakow," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Experimental Validation of Water Flow Glazing: Transient Response in Real Test Rooms," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    2. Milana Treshcheva & Irina Anikina & Vitaly Sergeev & Sergey Skulkin & Dmitry Treshchev, 2021. "Selection of Heat Pump Capacity Used at Thermal Power Plants under Electricity Market Operating Conditions," Energies, MDPI, vol. 14(1), pages 1-25, January.
    3. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    4. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Alfredo Gimelli & Massimiliano Muccillo, 2021. "Development of a 1 kW Micro-Polygeneration System Fueled by Natural Gas for Single-Family Users," Energies, MDPI, vol. 14(24), pages 1-21, December.
    6. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    7. Teresa Cuerdo-Vilches & Miguel Ángel Navas-Martín & Ignacio Oteiza, 2021. "Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    8. Sommerfeldt, Nelson & Pearce, Joshua M., 2023. "Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S," Applied Energy, Elsevier, vol. 336(C).
    9. Peter L. Borland & Kevin McDonnell & Mary Harty, 2023. "Assessment of the Potential to Use the Expelled Heat Energy from a Typical Data Centre in Ireland for Alternative Farming Methods," Energies, MDPI, vol. 16(18), pages 1-32, September.
    10. Fernando de Frutos & Teresa Cuerdo-Vilches & Carmen Alonso & Fernando Martín-Consuegra & Borja Frutos & Ignacio Oteiza & Miguel Ángel Navas-Martín, 2021. "Indoor Environmental Quality and Consumption Patterns before and during the COVID-19 Lockdown in Twelve Social Dwellings in Madrid, Spain," Sustainability, MDPI, vol. 13(14), pages 1-45, July.
    11. Milana Treshcheva & Irina Anikina & Dmitry Treshchev & Sergey Skulkin, 2022. "Heat Pump Capacity Selection for TPPs with Various Efficiency Levels," Energies, MDPI, vol. 15(12), pages 1-19, June.
    12. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    13. Kutlu, Cagri & Zhang, Yanan & Elmer, Theo & Su, Yuehong & Riffat, Saffa, 2020. "A simulation study on performance improvement of solar assisted heat pump hot water system by novel controllable crystallization of supercooled PCMs," Renewable Energy, Elsevier, vol. 152(C), pages 601-612.
    14. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    15. Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
    16. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    17. Robert Dylewski & Janusz Adamczyk, 2023. "Economic and Ecological Optimization of Thermal Insulation Depending on the Pre-Set Temperature in a Dwelling," Energies, MDPI, vol. 16(10), pages 1-13, May.
    18. Ieva Pakere & Kirils Goncarovs & Armands Grāvelsiņš & Marita Agate Zirne, 2024. "Dynamic Modelling of Data Center Waste Heat Potential Integration in District Heating in Latvia," Energies, MDPI, vol. 17(2), pages 1-13, January.
    19. Wojciech Rzeźnik & Ilona Rzeźnik & Paweł Hara, 2022. "Comparison of Real and Forecasted Domestic Hot Water Consumption and Demand for Heat Power in Multifamily Buildings, in Poland," Energies, MDPI, vol. 15(19), pages 1-17, September.
    20. Pinamonti, Maria & Baggio, Paolo, 2020. "Energy and economic optimization of solar-assisted heat pump systems with storage technologies for heating and cooling in residential buildings," Renewable Energy, Elsevier, vol. 157(C), pages 90-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7985-:d:691197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.