IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i10p4174-d1150124.html
   My bibliography  Save this article

Economic and Ecological Optimization of Thermal Insulation Depending on the Pre-Set Temperature in a Dwelling

Author

Listed:
  • Robert Dylewski

    (Institute of Mathematics, Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland)

  • Janusz Adamczyk

    (Institute of Economics and Finance, Faculty of Economics and Management, University of Zielona Góra, Licealna 9, 65-417 Zielona Góra, Poland)

Abstract

Improvement of the energy efficiency of buildings contributes to energy savings. It is obvious that thermal modernization of a building reduces the demand for energy needed to heat it. The energy demand itself also depends significantly on the temperature maintained inside the building. The article proposes a methodology for determining the economic and ecological benefits of thermal insulation of a building and the optimal thickness of thermal insulation depending on the pre-set temperature. The analysis includes various types of heat sources and materials used for thermal insulation. A range of pre-set air temperature values in residential premises from 17 °C to 26 °C was analysed. Determining the optimal thickness of the external walls, in accordance with the preferences of building users, even at the level of designing the thermal insulation of the building, is of significant importance for economic and ecological benefits. The optimum thickness of thermal insulation in the case of the ecological assessment was much higher in each variant than in the case of the economic assessment.

Suggested Citation

  • Robert Dylewski & Janusz Adamczyk, 2023. "Economic and Ecological Optimization of Thermal Insulation Depending on the Pre-Set Temperature in a Dwelling," Energies, MDPI, vol. 16(10), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4174-:d:1150124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/10/4174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/10/4174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert Dylewski, 2019. "Optimal Thermal Insulation Thicknesses of External Walls Based on Economic and Ecological Heating Cost," Energies, MDPI, vol. 12(18), pages 1-14, September.
    2. Khozema Ahmed Ali & Mardiana Idayu Ahmad & Yusri Yusup, 2020. "Issues, Impacts, and Mitigations of Carbon Dioxide Emissions in the Building Sector," Sustainability, MDPI, vol. 12(18), pages 1-11, September.
    3. Małgorzata Szulgowska-Zgrzywa & Ewelina Stefanowicz & Krzysztof Piechurski & Agnieszka Chmielewska & Marek Kowalczyk, 2020. "Impact of Users’ Behavior and Real Weather Conditions on the Energy Consumption of Tenement Houses in Wroclaw, Poland: Energy Performance Gap Simulation Based on a Model Calibrated by Field Measuremen," Energies, MDPI, vol. 13(24), pages 1-15, December.
    4. Saša M. Kalinović & Dejan I. Tanikić & Jelena M. Djoković & Ružica R. Nikolić & Branislav Hadzima & Robert Ulewicz, 2021. "Optimal Solution for an Energy Efficient Construction of a Ventilated Façade Obtained by a Genetic Algorithm," Energies, MDPI, vol. 14(11), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz Adamczyk & Robert Dylewski & Marcin Relich, 2024. "Multi-Indicator Assessment of a Thermal Insulation Investment, Taking into Account the Pre-Set Temperature," Sustainability, MDPI, vol. 16(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed, Hasnain & Du, Jianguo & Iqbal, Shuja & Nassani, Abdelmohsen A. & Basheer, Muhammad Farhan, 2024. "The impact of mineral resource abundance on environmental degradation in ten mineral- rich countries: Do the green innovation and financial technology matter?," Resources Policy, Elsevier, vol. 90(C).
    2. Marika Pilou & George Kosmadakis & George Meramveliotakis, 2023. "Modeling of an Integrated Renewable-Energy-Based System for Heating, Cooling, and Electricity for Buildings," Energies, MDPI, vol. 16(12), pages 1-29, June.
    3. Teresa Cuerdo-Vilches & Miguel Ángel Navas-Martín & Ignacio Oteiza, 2021. "Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    4. POPESCU Mara & STAICU Daniela, 2022. "Circular Economy And Religious Heritage Conservation: Adaptive Reuse Challenges," Revista Economica, Lucian Blaga University of Sibiu, Faculty of Economic Sciences, vol. 74(2), pages 40-48, September.
    5. Fernando de Frutos & Teresa Cuerdo-Vilches & Carmen Alonso & Fernando Martín-Consuegra & Borja Frutos & Ignacio Oteiza & Miguel Ángel Navas-Martín, 2021. "Indoor Environmental Quality and Consumption Patterns before and during the COVID-19 Lockdown in Twelve Social Dwellings in Madrid, Spain," Sustainability, MDPI, vol. 13(14), pages 1-45, July.
    6. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
    7. Piotr Kowalski & Paweł Szałański & Wojciech Cepiński, 2021. "Waste Heat Recovery by Air-to-Water Heat Pump from Exhausted Ventilating Air for Heating of Multi-Family Residential Buildings," Energies, MDPI, vol. 14(23), pages 1-17, November.
    8. Wu, Haijiang & Wang, Yu, 2024. "Integrating green resources and mineral dependency to address the urban-rural divide in China's carbon neutrality transition," Resources Policy, Elsevier, vol. 88(C).
    9. Bożena Babiarz & Władysław Szymański, 2020. "Introduction to the Dynamics of Heat Transfer in Buildings," Energies, MDPI, vol. 13(23), pages 1-28, December.
    10. Wojciech Rzeźnik & Ilona Rzeźnik & Paweł Hara, 2022. "Comparison of Real and Forecasted Domestic Hot Water Consumption and Demand for Heat Power in Multifamily Buildings, in Poland," Energies, MDPI, vol. 15(19), pages 1-17, September.
    11. Yi Le & Sheng-Yang Huang, 2023. "Prediction of Urban Trees Planting Base on Guided Cellular Automata to Enhance the Connection of Green Infrastructure," Land, MDPI, vol. 12(8), pages 1-18, July.
    12. Yorgos Spanodimitriou & Giovanni Ciampi & Michelangelo Scorpio & Niloufar Mokhtari & Ainoor Teimoorzadeh & Roberta Laffi & Sergio Sibilio, 2022. "Passive Strategies for Building Retrofitting: Performances Analysis and Incentive Policies for the Iranian Scenario," Energies, MDPI, vol. 15(5), pages 1-22, February.
    13. Helena Monteiro & Fausto Freire & John E. Fernández, 2020. "Life-Cycle Assessment of Alternative Envelope Construction for a New House in South-Western Europe: Embodied and Operational Magnitude," Energies, MDPI, vol. 13(16), pages 1-20, August.
    14. Valeria Annibaldi & Federica Cucchiella & Marianna Rotilio, 2020. "A Sustainable Solution for Energy Efficiency in Italian Climatic Contexts," Energies, MDPI, vol. 13(11), pages 1-16, June.
    15. Dariusz Bajno & Agnieszka Grzybowska & Łukasz Bednarz, 2021. "Old and Modern Wooden Buildings in the Context of Sustainable Development," Energies, MDPI, vol. 14(18), pages 1-31, September.
    16. Bamisaye Mayowa & Thanwadee Chinda, 2023. "Environmental Assessment of Demolition Tools Used in Townhouse Demolition: System Dynamics Modeling," Sustainability, MDPI, vol. 15(19), pages 1-25, September.
    17. Shihong Zeng & Gen Li & Shaomin Wu & Zhanfeng Dong, 2022. "The Impact of Green Technology Innovation on Carbon Emissions in the Context of Carbon Neutrality in China: Evidence from Spatial Spillover and Nonlinear Effect Analysis," IJERPH, MDPI, vol. 19(2), pages 1-25, January.
    18. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    19. Robert Dylewski & Janusz Adamczyk, 2021. "Optimum Thickness of Thermal Insulation with Both Economic and Ecological Costs of Heating and Cooling," Energies, MDPI, vol. 14(13), pages 1-17, June.
    20. Kumar, Dileep & Alam, Morshed & Zou, Patrick X.W. & Sanjayan, Jay G. & Memon, Rizwan Ahmed, 2020. "Comparative analysis of building insulation material properties and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:10:p:4174-:d:1150124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.