IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i24p6707-d464866.html
   My bibliography  Save this article

Impact of Users’ Behavior and Real Weather Conditions on the Energy Consumption of Tenement Houses in Wroclaw, Poland: Energy Performance Gap Simulation Based on a Model Calibrated by Field Measurements

Author

Listed:
  • Małgorzata Szulgowska-Zgrzywa

    (Department of Air-Conditioning, Heating, Gas Engineering and Air Protection, Wroclaw University of Science and Technology, Norwida St. 4/6, 50-373 Wroclaw, Poland)

  • Ewelina Stefanowicz

    (Department of Air-Conditioning, Heating, Gas Engineering and Air Protection, Wroclaw University of Science and Technology, Norwida St. 4/6, 50-373 Wroclaw, Poland)

  • Krzysztof Piechurski

    (Department of Air-Conditioning, Heating, Gas Engineering and Air Protection, Wroclaw University of Science and Technology, Norwida St. 4/6, 50-373 Wroclaw, Poland)

  • Agnieszka Chmielewska

    (Department of Air-Conditioning, Heating, Gas Engineering and Air Protection, Wroclaw University of Science and Technology, Norwida St. 4/6, 50-373 Wroclaw, Poland)

  • Marek Kowalczyk

    (Department of Climatology and Atmosphere Protection, University of Wroclaw, Kosiby St. 8, 51-621 Wroclaw, Poland)

Abstract

This paper presents the results of measuring the final energy consumption for heating and domestic hot water (DHW) preparation and indoor conditions in 15 apartments located in pre-war tenement houses. The measurements were compared to the computed energy consumption. The calculations ware made based on the model calibrated by field measurements. The discrepancies between measurements and calculations were assessed using the energy performance gap (EPG). Calculations were made separately for energy for heating and for DHW preparation. Additionally, the results of EPG calculations for different levels of analysis are presented aiming at assessing the impact of weather, temperature in the surrounding zones and users’ behavior. Users’ behaviors influencing the size of the EPG were divided into typical (energy saving or excessive energy consumption) and forced (energy poverty, response to the apartment’s surroundings, technical limitations. The connection between the heating sources and the heating habits has been clearly observed in the research. The former (typical) behaviors were the origin of the energy gap in the apartments heated with natural gas and district heating. The latter (forced) were the origin of the gap in the apartments heated with mostly electricity and solid fuel (with one exception: one apartment that utilized the district heating).

Suggested Citation

  • Małgorzata Szulgowska-Zgrzywa & Ewelina Stefanowicz & Krzysztof Piechurski & Agnieszka Chmielewska & Marek Kowalczyk, 2020. "Impact of Users’ Behavior and Real Weather Conditions on the Energy Consumption of Tenement Houses in Wroclaw, Poland: Energy Performance Gap Simulation Based on a Model Calibrated by Field Measuremen," Energies, MDPI, vol. 13(24), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6707-:d:464866
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/24/6707/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/24/6707/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lopes, M.A.R. & Antunes, C.H. & Martins, N., 2012. "Energy behaviours as promoters of energy efficiency: A 21st century review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4095-4104.
    2. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    3. Kazas, Georgios & Fabrizio, Enrico & Perino, Marco, 2017. "Energy demand profile generation with detailed time resolution at an urban district scale: A reference building approach and case study," Applied Energy, Elsevier, vol. 193(C), pages 243-262.
    4. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    5. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    6. Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Robert Dylewski & Janusz Adamczyk, 2023. "Economic and Ecological Optimization of Thermal Insulation Depending on the Pre-Set Temperature in a Dwelling," Energies, MDPI, vol. 16(10), pages 1-13, May.
    2. Piotr Kowalski & Paweł Szałański & Wojciech Cepiński, 2021. "Waste Heat Recovery by Air-to-Water Heat Pump from Exhausted Ventilating Air for Heating of Multi-Family Residential Buildings," Energies, MDPI, vol. 14(23), pages 1-17, November.
    3. Katarzyna Ratajczak & Katarzyna Michalak & Michał Narojczyk & Łukasz Amanowicz, 2021. "Real Domestic Hot Water Consumption in Residential Buildings and Its Impact on Buildings’ Energy Performance—Case Study in Poland," Energies, MDPI, vol. 14(16), pages 1-22, August.
    4. Teresa Cuerdo-Vilches & Miguel Ángel Navas-Martín & Ignacio Oteiza, 2021. "Behavior Patterns, Energy Consumption and Comfort during COVID-19 Lockdown Related to Home Features, Socioeconomic Factors and Energy Poverty in Madrid," Sustainability, MDPI, vol. 13(11), pages 1-19, May.
    5. Wojciech Rzeźnik & Ilona Rzeźnik & Paweł Hara, 2022. "Comparison of Real and Forecasted Domestic Hot Water Consumption and Demand for Heat Power in Multifamily Buildings, in Poland," Energies, MDPI, vol. 15(19), pages 1-17, September.
    6. Fernando de Frutos & Teresa Cuerdo-Vilches & Carmen Alonso & Fernando Martín-Consuegra & Borja Frutos & Ignacio Oteiza & Miguel Ángel Navas-Martín, 2021. "Indoor Environmental Quality and Consumption Patterns before and during the COVID-19 Lockdown in Twelve Social Dwellings in Madrid, Spain," Sustainability, MDPI, vol. 13(14), pages 1-45, July.
    7. Małgorzata Szulgowska-Zgrzywa & Ewelina Stefanowicz & Agnieszka Chmielewska & Krzysztof Piechurski, 2023. "Detailed Analysis of the Causes of the Energy Performance Gap Using the Example of Apartments in Historical Buildings in Wroclaw (Poland)," Energies, MDPI, vol. 16(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    2. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    3. Azar, Elie & Nikolopoulou, Christina & Papadopoulos, Sokratis, 2016. "Integrating and optimizing metrics of sustainable building performance using human-focused agent-based modeling," Applied Energy, Elsevier, vol. 183(C), pages 926-937.
    4. Fujimi, Toshio & Kajitani, Yoshio & Chang, Stephanie E., 2016. "Effective and persistent changes in household energy-saving behaviors: Evidence from post-tsunami Japan," Applied Energy, Elsevier, vol. 167(C), pages 93-106.
    5. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    6. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    7. Barth, Florian & Schüppler, Simon & Menberg, Kathrin & Blum, Philipp, 2023. "Estimating cooling capacities from aerial images using convolutional neural networks," Applied Energy, Elsevier, vol. 349(C).
    8. Habtamu Tkubet Ebuy & Hind Bril El Haouzi & Riad Benelmir & Remi Pannequin, 2023. "Occupant Behavior Impact on Building Sustainability Performance: A Literature Review," Sustainability, MDPI, vol. 15(3), pages 1-23, January.
    9. Weron, Tomasz & Kowalska-Pyzalska, Anna & Weron, Rafał, 2018. "The role of educational trainings in the diffusion of smart metering platforms: An agent-based modeling approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 591-600.
    10. Anti Hamburg & Targo Kalamees, 2018. "The Influence of Energy Renovation on the Change of Indoor Temperature and Energy Use," Energies, MDPI, vol. 11(11), pages 1-15, November.
    11. Alencastro, João & Fuertes, Alba & de Wilde, Pieter, 2018. "The relationship between quality defects and the thermal performance of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 883-894.
    12. Virkki-Hatakka, Terhi & Luoranen, Mika & Ikävalko, Markku, 2013. "Differences in perception: How the experts look at energy efficiency (findings from a Finnish survey)," Energy Policy, Elsevier, vol. 60(C), pages 499-508.
    13. Anna Mutule & Marcos Domingues & Fernando Ulloa-Vásquez & Dante Carrizo & Luis García-Santander & Ana-Maria Dumitrescu & Diego Issicaba & Lucas Melo, 2021. "Implementing Smart City Technologies to Inspire Change in Consumer Energy Behaviour," Energies, MDPI, vol. 14(14), pages 1-15, July.
    14. Prasanna, Ashreeta & Dorer, Viktor & Vetterli, Nadège, 2017. "Optimisation of a district energy system with a low temperature network," Energy, Elsevier, vol. 137(C), pages 632-648.
    15. Calvo, Rubén & Álamos, Nicolás & Huneeus, Nicolás & O'Ryan, Raúl, 2022. "Energy poverty effects on policy-based PM2.5 emissions mitigation in southern and central Chile," Energy Policy, Elsevier, vol. 161(C).
    16. Kiguchi, Y. & Weeks, M. & Arakawa, R., 2021. "Predicting winners and losers under time-of-use tariffs using smart meter data," Energy, Elsevier, vol. 236(C).
    17. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    18. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    19. Eugene Mohareb & Arman Hashemi & Mehdi Shahrestani & Minna Sunikka-Blank, 2017. "Retrofit Planning for the Performance Gap: Results of a Workshop on Addressing Energy, Health and Comfort Needs in a Protected Building," Energies, MDPI, vol. 10(8), pages 1-17, August.
    20. Sylwia Słupik & Joanna Kos-Łabędowicz & Joanna Trzęsiok, 2021. "Energy-Related Behaviour of Consumers from the Silesia Province (Poland)—Towards a Low-Carbon Economy," Energies, MDPI, vol. 14(8), pages 1-23, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:24:p:6707-:d:464866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.