IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i12p1026-d84380.html
   My bibliography  Save this article

Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS

Author

Listed:
  • Xiang Gou

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Yang Fu

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Imran Ali Shah

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Yamei Li

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Guoyou Xu

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Yue Yang

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Enyu Wang

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Liansheng Liu

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

  • Jinxiang Wu

    (School of Energy and Environmental Engineering, Hebei University of Technology, 5340# Xiping Road, Shuangkou Town, Beichen District, Tianjin 300401, China)

Abstract

This article proposes a dual heat source heat pump bathroom unit with preheater which is feasible for a single family. The system effectively integrates the air source heat pump (ASHP) and wastewater source heat pump (WSHP) technologies, and incorporates a preheater to recover shower wastewater heat and thus improve the total coefficient of performance (COP) of the system, and it has no electric auxiliary heating device, which is favorable to improve the security of the system operation. The process simulation software ASPEN PLUS, widely used in the design and optimization of thermodynamic systems, was used to simulate various cases of system use and to analyze the impact of the preheater on the system. The average COP value of a system with preheater is 6.588 and without preheater it is 4.677. Based on the optimization and analysis, under the standard conditions of air at 25 °C, relative humidity of 70%, wastewater at 35 °C, wastewater flow rate of 0.07 kg/s, tap water at 15 °C, and condenser outlet water temperature at 50 °C, the theoretical COP of the system can reach 9.784 at an evaporating temperature of 14.96 °C, condensing temperature of 48.74 °C, and preheated water temperature of 27.19 °C.

Suggested Citation

  • Xiang Gou & Yang Fu & Imran Ali Shah & Yamei Li & Guoyou Xu & Yue Yang & Enyu Wang & Liansheng Liu & Jinxiang Wu, 2016. "Research on a Household Dual Heat Source Heat Pump Water Heater with Preheater Based on ASPEN PLUS," Energies, MDPI, vol. 9(12), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1026-:d:84380
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/12/1026/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/12/1026/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongliang Zhang & Guangqing Huang & Yimin Xu & Qinghua Gong, 2015. "Waste-to-Energy in China: Key Challenges and Opportunities," Energies, MDPI, vol. 8(12), pages 1-15, December.
    2. Zhang, Jian-Fei & Qin, Yan & Wang, Chi-Chuan, 2015. "Review on CO2 heat pump water heater for residential use in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1383-1391.
    3. Liu, Lanbin & Fu, Lin & Jiang, Yi, 2010. "Application of an exhaust heat recovery system for domestic hot water," Energy, Elsevier, vol. 35(3), pages 1476-1481.
    4. Wong, L.T. & Mui, K.W. & Guan, Y., 2010. "Shower water heat recovery in high-rise residential buildings of Hong Kong," Applied Energy, Elsevier, vol. 87(2), pages 703-709, February.
    5. Hepbasli, Arif & Kalinci, Yildiz, 2009. "A review of heat pump water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1211-1229, August.
    6. Jiansheng Qu & Tek Maraseni & Lina Liu & Zhiqiang Zhang & Talal Yusaf, 2015. "A Comparison of Household Carbon Emission Patterns of Urban and Rural China over the 17 Year Period (1995–2011)," Energies, MDPI, vol. 8(9), pages 1-21, September.
    7. Dong, Jiankai & Zhang, Zhuo & Yao, Yang & Jiang, Yiqiang & Lei, Bo, 2015. "Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water," Applied Energy, Elsevier, vol. 154(C), pages 842-850.
    8. Liu, Lanbin & Fu, Lin & Zhang, Shigang, 2014. "The design and analysis of two exhaust heat recovery systems for public shower facilities," Applied Energy, Elsevier, vol. 132(C), pages 267-275.
    9. Yoon-Bok Seong & Jae-Han Lim, 2013. "Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes," Energies, MDPI, vol. 6(10), pages 1-12, October.
    10. Mansouri, Rami & Boukholda, Ismail & Bourouis, Mahmoud & Bellagi, Ahmed, 2015. "Modelling and testing the performance of a commercial ammonia/water absorption chiller using Aspen-Plus platform," Energy, Elsevier, vol. 93(P2), pages 2374-2383.
    11. Yu Jin Nam & Xin Yang Gao & Sung Hoon Yoon & Kwang Ho Lee, 2015. "Study on the Performance of a Ground Source Heat Pump System Assisted by Solar Thermal Storage," Energies, MDPI, vol. 8(12), pages 1-17, November.
    12. Paolo Maria Congedo & Caterina Lorusso & Maria Grazia De Giorgi & Domenico Laforgia, 2014. "Computational Fluid Dynamic Modeling of Horizontal Air-Ground Heat Exchangers (HAGHE) for HVAC Systems," Energies, MDPI, vol. 7(12), pages 1-18, December.
    13. Ali Kahraman & Alaeddin Çelebi, 2009. "Investigation of the Performance of a Heat Pump Using Waste Water as a Heat Source," Energies, MDPI, vol. 2(3), pages 1-17, August.
    14. Liu, Yin & Ma, Jing & Zhou, Guanghui & Zhang, Chao & Wan, Wenlei, 2016. "Performance of a solar air composite heat source heat pump system," Renewable Energy, Elsevier, vol. 87(P3), pages 1053-1058.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
    2. Guo, Xiaochao & Ma, Zhixian & Ma, Liangdong & Zhang, Jili, 2019. "Experimental study on the performance of a novel in–house heat pump water heater with freezing latent heat evaporator and assisted by domestic drain water," Applied Energy, Elsevier, vol. 235(C), pages 442-450.
    3. Sabina Kordana-Obuch & Mariusz Starzec & Daniel Słyś, 2021. "Assessment of the Feasibility of Implementing Shower Heat Exchangers in Residential Buildings Based on Users’ Energy Saving Preferences," Energies, MDPI, vol. 14(17), pages 1-30, September.
    4. Li Yang & Yunfeng Ren & Zhihua Wang & Zhouming Hang & Yunxia Luo, 2021. "Simulation and Economic Research of Circulating Cooling Water Waste Heat and Water Resource Recovery System," Energies, MDPI, vol. 14(9), pages 1-13, April.
    5. Farzin Golzar & David Nilsson & Viktoria Martin, 2020. "Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    6. Zhang, Dongwei & Gao, Zhao & Fang, Chenglei & Shen, Chao & Li, Hang & Qin, Xiang, 2022. "Simulation and analysis of hot water system with comprehensive utilization of solar energy and wastewater heat," Energy, Elsevier, vol. 253(C).
    7. Pavel Neuberger & Radomír Adamovský, 2017. "Analysis of the Potential of Low-Temperature Heat Pump Energy Sources," Energies, MDPI, vol. 10(11), pages 1-14, November.
    8. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.
    9. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).
    10. Yurim Kim & Jonghun Lim & Jae Yun Shim & Seokil Hong & Heedong Lee & Hyungtae Cho, 2022. "Optimization of Heat Exchanger Network via Pinch Analysis in Heat Pump-Assisted Textile Industry Wastewater Heat Recovery System," Energies, MDPI, vol. 15(9), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramadan, Mohamad & Murr, Rabih & Khaled, Mahmoud & Olabi, Abdul Ghani, 2018. "Mixed numerical - Experimental approach to enhance the heat pump performance by drain water heat recovery," Energy, Elsevier, vol. 149(C), pages 1010-1021.
    2. Morales-Ruiz, S. & Rigola, J. & Oliet, C. & Oliva, A., 2016. "Analysis and design of a drain water heat recovery storage unit based on PCM plates," Applied Energy, Elsevier, vol. 179(C), pages 1006-1019.
    3. Xiang Gou & Shian Liu & Yang Fu & Qiyan Zhang & Saima Iram & Yingfan Liu, 2018. "Experimental Study on the Performance of a Household Dual-Source Heat Pump Water Heater," Energies, MDPI, vol. 11(10), pages 1-18, October.
    4. Zhang, Dongwei & Gao, Zhao & Fang, Chenglei & Shen, Chao & Li, Hang & Qin, Xiang, 2022. "Simulation and analysis of hot water system with comprehensive utilization of solar energy and wastewater heat," Energy, Elsevier, vol. 253(C).
    5. Bertrand, Alexandre & Aggoune, Riad & Maréchal, François, 2017. "In-building waste water heat recovery: An urban-scale method for the characterisation of water streams and the assessment of energy savings and costs," Applied Energy, Elsevier, vol. 192(C), pages 110-125.
    6. Dong, Jiankai & Zhang, Zhuo & Yao, Yang & Jiang, Yiqiang & Lei, Bo, 2015. "Experimental performance evaluation of a novel heat pump water heater assisted with shower drain water," Applied Energy, Elsevier, vol. 154(C), pages 842-850.
    7. Guo, Xiaochao & Ma, Zhixian & Ma, Liangdong & Zhang, Jili, 2019. "Experimental study on the performance of a novel in–house heat pump water heater with freezing latent heat evaporator and assisted by domestic drain water," Applied Energy, Elsevier, vol. 235(C), pages 442-450.
    8. Farzin Golzar & David Nilsson & Viktoria Martin, 2020. "Forecasting Wastewater Temperature Based on Artificial Neural Network (ANN) Technique and Monte Carlo Sensitivity Analysis," Sustainability, MDPI, vol. 12(16), pages 1-17, August.
    9. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Sabina Kordana-Obuch & Michał Wojtoń & Mariusz Starzec & Beata Piotrowska, 2023. "Opportunities and Challenges for Research on Heat Recovery from Wastewater: Bibliometric and Strategic Analyses," Energies, MDPI, vol. 16(17), pages 1-36, September.
    11. Abdur Rehman Mazhar & Shuli Liu & Ashish Shukla, 2018. "A Key Review of Non-Industrial Greywater Heat Harnessing," Energies, MDPI, vol. 11(2), pages 1-34, February.
    12. Sabina Kordana-Obuch & Mariusz Starzec & Michał Wojtoń & Daniel Słyś, 2023. "Greywater as a Future Sustainable Energy and Water Source: Bibliometric Mapping of Current Knowledge and Strategies," Energies, MDPI, vol. 16(2), pages 1-34, January.
    13. Sara Sewastianik & Andrzej Gajewski, 2020. "Energetic and Ecologic Heat Pumps Evaluation in Poland," Energies, MDPI, vol. 13(18), pages 1-17, September.
    14. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    15. Guo, Xiaochao & Ma, Zhixian & Zhang, Jili, 2020. "Performance analysis of a novel integrated home energy system with freezing latent heat collection," Applied Energy, Elsevier, vol. 264(C).
    16. Elías-Maxil, J.A. & van der Hoek, Jan Peter & Hofman, Jan & Rietveld, Luuk, 2014. "Energy in the urban water cycle: Actions to reduce the total expenditure of fossil fuels with emphasis on heat reclamation from urban water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 808-820.
    17. Hervás-Blasco, Estefanía & Navarro-Peris, Emilio & Corberán, José Miguel, 2019. "Optimal design and operation of a central domestic hot water heat pump system for a group of dwellings employing low temperature waste heat as a source," Energy, Elsevier, vol. 188(C).
    18. Bertrand, Alexandre & Mastrucci, Alessio & Schüler, Nils & Aggoune, Riad & Maréchal, François, 2017. "Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation," Applied Energy, Elsevier, vol. 186(P2), pages 152-166.
    19. Golzar, Farzin & Silveira, Semida, 2021. "Impact of wastewater heat recovery in buildings on the performance of centralized energy recovery – A case study of Stockholm," Applied Energy, Elsevier, vol. 297(C).
    20. Hélio A. G. Diniz & Tiago F. Paulino & Juan J. G. Pabon & Antônio A. T. Maia & Raphael N. Oliveira, 2021. "Dynamic Model of a Transcritical CO 2 Heat Pump for Residential Water Heating," Sustainability, MDPI, vol. 13(6), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:12:p:1026-:d:84380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.