IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i20p6837-d659745.html
   My bibliography  Save this article

Time-Domain Circuit Modelling for Hybrid Supercapacitors

Author

Listed:
  • Fabio Corti

    (Dipartimento di Ingegneria, Università di Perugia, Via G. Duranti 67, 06125 Perugia, Italy)

  • Michelangelo-Santo Gulino

    (Dipartimento di Ingegneria Industriale, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

  • Maurizio Laschi

    (Dipartimento di Ingegneria Industriale, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

  • Gabriele Maria Lozito

    (Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

  • Luca Pugi

    (Dipartimento di Ingegneria Industriale, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

  • Alberto Reatti

    (Dipartimento di Ingegneria dell’Informazione, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

  • Dario Vangi

    (Dipartimento di Ingegneria Industriale, Università di Firenze, Via di Santa Marta 3, 50139 Firenze, Italy)

Abstract

Classic circuit modeling for supercapacitors is limited in representing the strongly non-linear behavior of the hybrid supercapacitor technology. In this work, two novel modeling techniques suitable to represent the time-domain electrical behavior of a hybrid supercapacitor are presented. The first technique enhances a well-affirmed circuit model by introducing specific non-linearities. The second technique models the device through a black-box approach with a neural network. Both the modeling techniques are validated experimentally using a workbench to acquire data from a real hybrid supercapacitor. The proposed models, suitable for different supercapacitor technologies, achieve higher accuracy and generalization capabilities compared to those already presented in the literature. Both modeling techniques allow for an accurate representation of both short-time domain and steady-state simulations, providing a valuable asset in electrical designs featuring supercapacitors.

Suggested Citation

  • Fabio Corti & Michelangelo-Santo Gulino & Maurizio Laschi & Gabriele Maria Lozito & Luca Pugi & Alberto Reatti & Dario Vangi, 2021. "Time-Domain Circuit Modelling for Hybrid Supercapacitors," Energies, MDPI, vol. 14(20), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6837-:d:659745
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/20/6837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/20/6837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gustavo Navarro & Jorge Nájera & Jorge Torres & Marcos Blanco & Miguel Santos & Marcos Lafoz, 2020. "Development and Experimental Validation of a Supercapacitor Frequency Domain Model for Industrial Energy Applications Considering Dynamic Behaviour at High Frequencies," Energies, MDPI, vol. 13(5), pages 1-18, March.
    2. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Ehsan Sedgh Gooya, 2021. "Optimal Sizing and Energy Management of Microgrids with Vehicle-to-Grid Technology: A Critical Review and Future Trends," Energies, MDPI, vol. 14(14), pages 1-45, July.
    3. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giacomo Talluri & Gabriele Maria Lozito & Francesco Grasso & Carlos Iturrino Garcia & Antonio Luchetta, 2021. "Optimal Battery Energy Storage System Scheduling within Renewable Energy Communities," Energies, MDPI, vol. 14(24), pages 1-23, December.
    2. Kasun Subasinghage & Kosala Gunawardane & Nisitha Padmawansa & Nihal Kularatna & Mehdi Moradian, 2022. "Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications," Energies, MDPI, vol. 15(20), pages 1-15, October.
    3. Alejandro Rojano-Padrón & Marc Olivier Metais & Francisco J. Ramos-Real & Yannick Perez, 2023. "Tenerife’s Infrastructure Plan for Electromobility: A MATSim Evaluation," Energies, MDPI, vol. 16(3), pages 1-24, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.
    2. Nayzel I. Jannif & Rahul R. Kumar & Ali Mohammadi & Giansalvo Cirrincione & Maurizio Cirrincione, 2023. "Constrained Least-Squares Parameter Estimation for a Double Layer Capacitor," Energies, MDPI, vol. 16(10), pages 1-19, May.
    3. Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
    4. Oussama Ouramdane & Elhoussin Elbouchikhi & Yassine Amirat & Franck Le Gall & Ehsan Sedgh Gooya, 2022. "Home Energy Management Considering Renewable Resources, Energy Storage, and an Electric Vehicle as a Backup," Energies, MDPI, vol. 15(8), pages 1-20, April.
    5. Roberto de Fazio & Donato Cafagna & Giorgio Marcuccio & Paolo Visconti, 2020. "Limitations and Characterization of Energy Storage Devices for Harvesting Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    6. Abdulgader Alsharif & Chee Wei Tan & Razman Ayop & Ahmed Al Smin & Abdussalam Ali Ahmed & Farag Hamed Kuwil & Mohamed Mohamed Khaleel, 2023. "Impact of Electric Vehicle on Residential Power Distribution Considering Energy Management Strategy and Stochastic Monte Carlo Algorithm," Energies, MDPI, vol. 16(3), pages 1-22, January.
    7. Yue Zhou & Hussein Obeid & Salah Laghrouche & Mickael Hilairet & Abdesslem Djerdir, 2020. "A Disturbance Rejection Control Strategy of a Single Converter Hybrid Electrical System Integrating Battery Degradation," Energies, MDPI, vol. 13(11), pages 1-19, June.
    8. Mokesioluwa Fanoro & Mladen Božanić & Saurabh Sinha, 2022. "A Review of the Impact of Battery Degradation on Energy Management Systems with a Special Emphasis on Electric Vehicles," Energies, MDPI, vol. 15(16), pages 1-29, August.
    9. Matteo Ravasio & Gian Paolo Incremona & Patrizio Colaneri & Andrea Dolcini & Piero Moia, 2021. "Distributed Nonlinear AIMD Algorithms for Electric Bus Charging Plants," Energies, MDPI, vol. 14(15), pages 1-17, July.
    10. Shailendra Rajput & Alon Kuperman & Asher Yahalom & Moshe Averbukh, 2020. "Studies on Dynamic Properties of Ultracapacitors Using Infinite r–C Chain Equivalent Circuit and Reverse Fourier Transform," Energies, MDPI, vol. 13(18), pages 1-11, September.
    11. Khawaja Haider Ali & Mohammad Abusara & Asif Ali Tahir & Saptarshi Das, 2023. "Dual-Layer Q-Learning Strategy for Energy Management of Battery Storage in Grid-Connected Microgrids," Energies, MDPI, vol. 16(3), pages 1-17, January.
    12. Omar Makram Kamel & Ahmed A. Zaki Diab & Mohamed Metwally Mahmoud & Ameena Saad Al-Sumaiti & Hamdy M. Sultan, 2023. "Performance Enhancement of an Islanded Microgrid with the Support of Electrical Vehicle and STATCOM Systems," Energies, MDPI, vol. 16(4), pages 1-19, February.
    13. Miroslaw Lewandowski & Marek Orzylowski, 2020. "Novel Time Method of Identification of Fractional Model Parameters of Supercapacitor," Energies, MDPI, vol. 13(11), pages 1-17, June.
    14. Chen, Weidong & Wang, Junnan & Yu, Guanyi & Chen, Jiajia & Hu, Yumeng, 2022. "Research on day-ahead transactions between multi-microgrid based on cooperative game model," Applied Energy, Elsevier, vol. 316(C).
    15. Nikita V. Martyushev & Boris V. Malozyomov & Ilham H. Khalikov & Viktor Alekseevich Kukartsev & Vladislav Viktorovich Kukartsev & Vadim Sergeevich Tynchenko & Yadviga Aleksandrovna Tynchenko & Mengxu , 2023. "Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption," Energies, MDPI, vol. 16(2), pages 1-39, January.
    16. Himanshi Agrawal & Akash Talwariya & Amandeep Gill & Aman Singh & Hashem Alyami & Wael Alosaimi & Arturo Ortega-Mansilla, 2022. "A Fuzzy-Genetic-Based Integration of Renewable Energy Sources and E-Vehicles," Energies, MDPI, vol. 15(9), pages 1-15, April.
    17. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    18. Namala Narasimhulu & Mohan Awasthy & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari & Nadimapalli Himabindu, 2023. "Analysis and Impacts of Grid Integrated Photo-Voltaic and Electric Vehicle on Power Quality Issues," Energies, MDPI, vol. 16(2), pages 1-18, January.
    19. Yalin Liang & Yuyao He & Yun Niu, 2022. "Robust Errorless-Control-Targeted Technique Based on MPC for Microgrid with Uncertain Electric Vehicle Energy Storage Systems," Energies, MDPI, vol. 15(4), pages 1-23, February.
    20. Kai Song & Yu Lan & Xian Zhang & Jinhai Jiang & Chuanyu Sun & Guang Yang & Fengshuo Yang & Hao Lan, 2023. "A Review on Interoperability of Wireless Charging Systems for Electric Vehicles," Energies, MDPI, vol. 16(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6837-:d:659745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.