IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7752-d947926.html
   My bibliography  Save this article

Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications

Author

Listed:
  • Kasun Subasinghage

    (Department of Materials and Mechanical Technology, Faculty of Technology, the University of Sri Jayewardenepura, Homagama 10206, Sri Lanka)

  • Kosala Gunawardane

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, WS Building, 34 St Paul Street, Auckland 1142, New Zealand)

  • Nisitha Padmawansa

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, WS Building, 34 St Paul Street, Auckland 1142, New Zealand)

  • Nihal Kularatna

    (School of Engineering, the University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand)

  • Mehdi Moradian

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, WS Building, 34 St Paul Street, Auckland 1142, New Zealand)

Abstract

Supercapacitors can store a million times more energy per unit mass or volume compared to electrolytic capacitors. Due to their low internal resistance, they are capable of driving or absorbing pulsative high currents. Over the last quarter, century supercapacitor (SC) manufacturers have developed several families of mass-scale devices with high-power density and a longer cycle life that helped the end-users to improve their energy storage systems and products. Today, there are three common device families, namely, (i) symmetrical double-layer capacitors (EDLCs), (ii) hybrid capacitors with a lithium electrode, and (iii) battery capacitors based on pseudo capacitance concepts. This review paper compares these families and provides an overview of several state-of-the-art applications in electric vehicles (EVs), microgrids, and consumer electronics.

Suggested Citation

  • Kasun Subasinghage & Kosala Gunawardane & Nisitha Padmawansa & Nihal Kularatna & Mehdi Moradian, 2022. "Modern Supercapacitors Technologies and Their Applicability in Mature Electrical Engineering Applications," Energies, MDPI, vol. 15(20), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7752-:d:947926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7752/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7752/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muzaffar, Aqib & Ahamed, M. Basheer & Deshmukh, Kalim & Thirumalai, Jagannathan, 2019. "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 123-145.
    2. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    3. Fabio Corti & Michelangelo-Santo Gulino & Maurizio Laschi & Gabriele Maria Lozito & Luca Pugi & Alberto Reatti & Dario Vangi, 2021. "Time-Domain Circuit Modelling for Hybrid Supercapacitors," Energies, MDPI, vol. 14(20), pages 1-16, October.
    4. Horn, Michael & MacLeod, Jennifer & Liu, Meinan & Webb, Jeremy & Motta, Nunzio, 2019. "Supercapacitors: A new source of power for electric cars?," Economic Analysis and Policy, Elsevier, vol. 61(C), pages 93-103.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    6. Regina Lamedica & Alessandro Ruvio & Manuel Tobia & Guido Guidi Buffarini & Nicola Carones, 2020. "A Preliminary Techno-Economic Comparison between DC Electrification and Trains with On-Board Energy Storage Systems," Energies, MDPI, vol. 13(24), pages 1-27, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Gocki & Agnieszka Jakubowska-Ciszek & Piotr Pruski, 2022. "Comparative Analysis of a New Class of Symmetric and Asymmetric Supercapacitors Constructed on the Basis of ITO Collectors," Energies, MDPI, vol. 16(1), pages 1-16, December.
    2. Dimitrios Rimpas & Stavrοs D. Kaminaris & Dimitrios D. Piromalis & George Vokas & Konstantinos G. Arvanitis & Christos-Spyridon Karavas, 2023. "Comparative Review of Motor Technologies for Electric Vehicles Powered by a Hybrid Energy Storage System Based on Multi-Criteria Analysis," Energies, MDPI, vol. 16(6), pages 1-24, March.
    3. Khabibulla A. Abdullin & Maratbek T. Gabdullin & Zhanar K. Kalkozova & Shyryn T. Nurbolat & Mojtaba Mirzaeian, 2023. "Symmetrical Composite Supercapacitor Based on Activated Carbon and Cobalt Nanoparticles with High Cyclic Stability and Current Load," Energies, MDPI, vol. 16(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghosh, Sourav & Yadav, Sarita & Devi, Ambika & Thomas, Tiju, 2022. "Techno-economic understanding of Indian energy-storage market: A perspective on green materials-based supercapacitor technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Canales, Fausto A. & Lin, Shaoquan & Ahmed, Salman & Zhang, Yijie, 2021. "Economic analysis and optimization of a renewable energy based power supply system with different energy storages for a remote island," Renewable Energy, Elsevier, vol. 164(C), pages 1376-1394.
    3. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    4. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    5. Haris, Muhammad & Hasan, Muhammad Noman & Qin, Shiyin, 2021. "Early and robust remaining useful life prediction of supercapacitors using BOHB optimized Deep Belief Network," Applied Energy, Elsevier, vol. 286(C).
    6. Marmiroli, Benedetta & Venditti, Mattia & Dotelli, Giovanni & Spessa, Ezio, 2020. "The transport of goods in the urban environment: A comparative life cycle assessment of electric, compressed natural gas and diesel light-duty vehicles," Applied Energy, Elsevier, vol. 260(C).
    7. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    8. Jiang, Zhuosheng & Zhai, Shengli & Huang, Mingzhi & Songsiriritthigul, Prayoon & Aung, Su Htike & Oo, Than Zaw & Luo, Min & Chen, Fuming, 2021. "3D carbon nanocones/metallic MoS2 nanosheet electrodes towards flexible supercapacitors for wearable electronics," Energy, Elsevier, vol. 227(C).
    9. Ganesan Sriram & Mahaveer Kurkuri & Tae Hwan Oh, 2023. "Recent Trends in Highly Porous Structured Carbon Electrodes for Supercapacitor Applications: A Review," Energies, MDPI, vol. 16(12), pages 1-36, June.
    10. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. El Bakkari, Fatima & Mounir, Hamid, 2024. "Compatible alternative energy storage systems for electric vehicles: Review of relevant technology derived from conventional systems," Energy, Elsevier, vol. 288(C).
    12. Chenchen Ji & Haonan Cui & Hongyu Mi & Shengchun Yang, 2021. "Applications of 2D MXenes for Electrochemical Energy Conversion and Storage," Energies, MDPI, vol. 14(23), pages 1-23, December.
    13. Krishnan, Syam G. & Arulraj, Arunachalam & Khalid, Mohammad & Reddy, M.V. & Jose, Rajan, 2021. "Energy storage in metal cobaltite electrodes: Opportunities & challenges in magnesium cobalt oxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Wu, Wei & Lin, Boqiang, 2018. "Application value of energy storage in power grid: A special case of China electricity market," Energy, Elsevier, vol. 165(PB), pages 1191-1199.
    15. Morteza Nazari-Heris & Atefeh Tamaskani Esfehankalateh & Pouya Ifaei, 2023. "Hybrid Energy Systems for Buildings: A Techno-Economic-Enviro Systematic Review," Energies, MDPI, vol. 16(12), pages 1-15, June.
    16. Younes Sahri & Youcef Belkhier & Salah Tamalouzt & Nasim Ullah & Rabindra Nath Shaw & Md. Shahariar Chowdhury & Kuaanan Techato, 2021. "Energy Management System for Hybrid PV/Wind/Battery/Fuel Cell in Microgrid-Based Hydrogen and Economical Hybrid Battery/Super Capacitor Energy Storage," Energies, MDPI, vol. 14(18), pages 1-32, September.
    17. Eklas Hossain & Hossain Mansur Resalat Faruque & Md. Samiul Haque Sunny & Naeem Mohammad & Nafiu Nawar, 2020. "A Comprehensive Review on Energy Storage Systems: Types, Comparison, Current Scenario, Applications, Barriers, and Potential Solutions, Policies, and Future Prospects," Energies, MDPI, vol. 13(14), pages 1-127, July.
    18. Damdoum, Amel & Slama-Belkhodja, Ilhem & Pietrzak-David, Maria & Debbou, Mustapha, 2016. "Low voltage ride-through strategies for doubly fed induction machine pumped storage system under grid faults," Renewable Energy, Elsevier, vol. 95(C), pages 248-262.
    19. Alejandro Sallyth Guerrero Hernandez & Lúcia Valéria Ramos Arruda, 2021. "Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12842-12866, September.
    20. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7752-:d:947926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.