IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3060-d561642.html
   My bibliography  Save this article

Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications

Author

Listed:
  • Gustavo Navarro

    (CIEMAT, Spanish National Research Centre on Energy, Environment and Technology, 28040 Madrid, Spain)

  • Jorge Torres

    (CIEMAT, Spanish National Research Centre on Energy, Environment and Technology, 28040 Madrid, Spain)

  • Marcos Blanco

    (CIEMAT, Spanish National Research Centre on Energy, Environment and Technology, 28040 Madrid, Spain)

  • Jorge Nájera

    (CIEMAT, Spanish National Research Centre on Energy, Environment and Technology, 28040 Madrid, Spain)

  • Miguel Santos-Herran

    (CIEMAT, Spanish National Research Centre on Energy, Environment and Technology, 28040 Madrid, Spain)

  • Marcos Lafoz

    (CIEMAT, Spanish National Research Centre on Energy, Environment and Technology, 28040 Madrid, Spain)

Abstract

Energy storage systems (ESS) are becoming essential as a solution for troublesome industrial systems. This study focuses on the application of a type of ESS, a high-power technology known in the literature as supercapacitors or electric double layer capacitors (EDLC). This technology has had a huge impact during the last decade on research related to the electric traction drives, renewable sources and powergrids. Related to this aspect, this paper summarizes the most relevant scientific publications in the last five years that study the use of supercapacitor technology (SCs) in electric traction applications (drives for rail vehicles and drives for road vehicles), generation systems for renewable energy (wind, solar and wave energy), and connection systems to the electric grid (voltage and frequency regulation and microgrids). The technology based on EDLC and the practical aspects that must be taken into account in the op-eration of these systems in industrial applications are briefly described. For each of the aforementioned applications, it is described how the problems are solved by using the energy storage technology, drawing the solutions proposed by different authors. Special attention is paid to the control strategies when combining SCs with other technologies, such as batteries. As a summary, some conclusions are collected drawn from the publications analyzed, evaluating the aspects in which it is necessary to conduct further research in order to facilitate the integration of EDLC technology.

Suggested Citation

  • Gustavo Navarro & Jorge Torres & Marcos Blanco & Jorge Nájera & Miguel Santos-Herran & Marcos Lafoz, 2021. "Present and Future of Supercapacitor Technology Applied to Powertrains, Renewable Generation and Grid Connection Applications," Energies, MDPI, vol. 14(11), pages 1-29, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3060-:d:561642
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ramy Georgious & Jorge Garcia & Mark Sumner & Sarah Saeed & Pablo Garcia, 2020. "Fault Ride-Through Power Electronic Topologies for Hybrid Energy Storage Systems," Energies, MDPI, vol. 13(1), pages 1-19, January.
    2. Subarto Kumar Ghosh & Tushar Kanti Roy & Md Abu Hanif Pramanik & Ajay Krishno Sarkar & Md. Apel Mahmud, 2020. "An Energy Management System-Based Control Strategy for DC Microgrids with Dual Energy Storage Systems," Energies, MDPI, vol. 13(11), pages 1-16, June.
    3. Thien-An Nguyen-Huu & Van Thang Nguyen & Kyeon Hur & Jae Woong Shim, 2020. "Coordinated Control of a Hybrid Energy Storage System for Improving the Capability of Frequency Regulation and State-of-Charge Management," Energies, MDPI, vol. 13(23), pages 1-21, November.
    4. Oindrilla Dutta & Mahmoud Saleh & Mahdiyeh Khodaparastan & Ahmed Mohamed, 2020. "A Dual-Stage Modeling and Optimization Framework for Wayside Energy Storage in Electric Rail Transit Systems," Energies, MDPI, vol. 13(7), pages 1-26, April.
    5. Tiezhou Wu & Wenshan Yu & Lujun Wang & Linxin Guo & Zhiquan Tang, 2019. "Power Distribution Strategy of Microgrid Hybrid Energy Storage System Based on Improved Hierarchical Control," Energies, MDPI, vol. 12(18), pages 1-14, September.
    6. Sun, Lingling & Qiu, Jing & Han, Xiao & Yin, Xia & Dong, Zhao Yang, 2020. "Capacity and energy sharing platform with hybrid energy storage system: An example of hospitality industry," Applied Energy, Elsevier, vol. 280(C).
    7. Eltigani, Dalia & Masri, Syafrudin, 2015. "Challenges of integrating renewable energy sources to smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 770-780.
    8. Jura Arkhangelski & Pedro Roncero-Sánchez & Mahamadou Abdou-Tankari & Javier Vázquez & Gilles Lefebvre, 2019. "Control and Restrictions of a Hybrid Renewable Energy System Connected to the Grid: A Battery and Supercapacitor Storage Case," Energies, MDPI, vol. 12(14), pages 1-23, July.
    9. Tran, Dai-Duong & Vafaeipour, Majid & El Baghdadi, Mohamed & Barrero, Ricardo & Van Mierlo, Joeri & Hegazy, Omar, 2020. "Thorough state-of-the-art analysis of electric and hybrid vehicle powertrains: Topologies and integrated energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    10. Van-Long Pham & Keiji Wada, 2020. "Applications of Triple Active Bridge Converter for Future Grid and Integrated Energy Systems," Energies, MDPI, vol. 13(7), pages 1-22, April.
    11. Jingyu Liu & Lei Zhang, 2016. "Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations," Energies, MDPI, vol. 9(12), pages 1-17, November.
    12. Gustavo Navarro & Jorge Nájera & Jorge Torres & Marcos Blanco & Miguel Santos & Marcos Lafoz, 2020. "Development and Experimental Validation of a Supercapacitor Frequency Domain Model for Industrial Energy Applications Considering Dynamic Behaviour at High Frequencies," Energies, MDPI, vol. 13(5), pages 1-18, March.
    13. Gimara Rajapakse & Shantha Jayasinghe & Alan Fleming & Michael Negnevitsky, 2018. "Grid Integration and Power Smoothing of an Oscillating Water Column Wave Energy Converter," Energies, MDPI, vol. 11(7), pages 1-19, July.
    14. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    15. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    16. Cuidong Xu & Zhu Chen & Ka Wai Eric Cheng & Xiaolin Wang & Ho Fai Ho, 2019. "A Supercapacitor-Based Method to Mitigate Overvoltage and Recycle the Energy of Pantograph Arcing in the High Speed Railway," Energies, MDPI, vol. 12(7), pages 1-12, March.
    17. Zhang, Lei & Hu, Xiaosong & Wang, Zhenpo & Sun, Fengchun & Dorrell, David G., 2018. "A review of supercapacitor modeling, estimation, and applications: A control/management perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1868-1878.
    18. Sadam Hussain & Muhammad Umair Ali & Gwan-Soo Park & Sarvar Hussain Nengroo & Muhammad Adil Khan & Hee-Je Kim, 2019. "A Real-Time Bi-Adaptive Controller-Based Energy Management System for Battery–Supercapacitor Hybrid Electric Vehicles," Energies, MDPI, vol. 12(24), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reveles-Miranda, María & Ramirez-Rivera, Victor & Pacheco-Catalán, Daniella, 2024. "Hybrid energy storage: Features, applications, and ancillary benefits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Su-Jin Jang & Jeong Han Lee & Seo Hui Kang & Yun Chan Kang & Kwang Chul Roh, 2021. "Nitrogen-Doped and Carbon-Coated Activated Carbon as a Conductivity Additive-Free Electrode for Supercapacitors," Energies, MDPI, vol. 14(22), pages 1-10, November.
    3. Mihaiță Gireadă & Dan Hulea & Nicolae Muntean & Octavian Cornea, 2023. "A Common-Ground Bidirectional Hybrid Switched-Capacitor DC–DC Converter with a High Voltage Conversion Ratio," Energies, MDPI, vol. 16(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gustavo Navarro & Marcos Blanco & Jorge Torres & Jorge Nájera & Álvaro Santiago & Miguel Santos-Herran & Dionisio Ramírez & Marcos Lafoz, 2021. "Dimensioning Methodology of an Energy Storage System Based on Supercapacitors for Grid Code Compliance of a Wave Power Plant," Energies, MDPI, vol. 14(4), pages 1-20, February.
    2. Hu, Lin & Tian, Qingtao & Zou, Changfu & Huang, Jing & Ye, Yao & Wu, Xianhui, 2022. "A study on energy distribution strategy of electric vehicle hybrid energy storage system considering driving style based on real urban driving data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Shailendra Rajput & Alon Kuperman & Asher Yahalom & Moshe Averbukh, 2020. "Studies on Dynamic Properties of Ultracapacitors Using Infinite r–C Chain Equivalent Circuit and Reverse Fourier Transform," Energies, MDPI, vol. 13(18), pages 1-11, September.
    4. Shi, Dehua & Liu, Sheng & Cai, Yingfeng & Wang, Shaohua & Li, Haoran & Chen, Long, 2021. "Pontryagin’s minimum principle based fuzzy adaptive energy management for hybrid electric vehicle using real-time traffic information," Applied Energy, Elsevier, vol. 286(C).
    5. Pierpaolo Polverino & Ivan Arsie & Cesare Pianese, 2021. "Optimal Energy Management for Hybrid Electric Vehicles Based on Dynamic Programming and Receding Horizon," Energies, MDPI, vol. 14(12), pages 1-11, June.
    6. Qiu, Rui & Zhang, Haoran & Wang, Guotao & Liang, Yongtu & Yan, Jinyue, 2023. "Green hydrogen-based energy storage service via power-to-gas technologies integrated with multi-energy microgrid," Applied Energy, Elsevier, vol. 350(C).
    7. Miloud Rezkallah & Sanjeev Singh & Ambrish Chandra & Bhim Singh & Hussein Ibrahim, 2020. "Off-Grid System Configurations for Coordinated Control of Renewable Energy Sources," Energies, MDPI, vol. 13(18), pages 1-25, September.
    8. Monowar Hossain & Saad Mekhilef & Firdaus Afifi & Laith M Halabi & Lanre Olatomiwa & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski, 2018. "Application of the hybrid ANFIS models for long term wind power density prediction with extrapolation capability," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-31, April.
    9. Chitchai Srithapon & Prasanta Ghosh & Apirat Siritaratiwat & Rongrit Chatthaworn, 2020. "Optimization of Electric Vehicle Charging Scheduling in Urban Village Networks Considering Energy Arbitrage and Distribution Cost," Energies, MDPI, vol. 13(2), pages 1-20, January.
    10. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    11. Yi Zhang & Qiang Guo & Jie Song, 2023. "Internet-Distributed Hardware-in-the-Loop Simulation Platform for Plug-In Fuel Cell Hybrid Vehicles," Energies, MDPI, vol. 16(18), pages 1-17, September.
    12. Pedrayes, Joaquín F. & Melero, Manuel G. & Cano, Jose M. & Norniella, Joaquín G. & Duque, Salvador B. & Rojas, Carlos H. & Orcajo, Gonzalo A., 2021. "Lambert W function based closed-form expressions of supercapacitor electrical variables in constant power applications," Energy, Elsevier, vol. 218(C).
    13. Lujun Wang & Jiong Guo & Chen Xu & Tiezhou Wu & Huipin Lin, 2019. "Hybrid Model Predictive Control Strategy of Supercapacitor Energy Storage System Based on Double Active Bridge," Energies, MDPI, vol. 12(11), pages 1-20, June.
    14. Choudhary, Ram Bilash & Ansari, Sarfaraz & Majumder, Mandira, 2021. "Recent advances on redox active composites of metal-organic framework and conducting polymers as pseudocapacitor electrode material," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    16. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    17. Henry Miniguano & Andrés Barrado & Cristina Fernández & Pablo Zumel & Antonio Lázaro, 2019. "A General Parameter Identification Procedure Used for the Comparative Study of Supercapacitors Models," Energies, MDPI, vol. 12(9), pages 1-20, May.
    18. Gulin, Marko & Pavlović, Tomislav & Vašak, Mario, 2016. "Photovoltaic panel and array static models for power production prediction: Integration of manufacturers’ and on-line data," Renewable Energy, Elsevier, vol. 97(C), pages 399-413.
    19. Singh, Somendra Pratap & Hanif, Athar & Ahmed, Qadeer & Meijer, Maarten & Lahti, John, 2022. "Optimal management of electric hotel loads in mild hybrid heavy duty truck," Applied Energy, Elsevier, vol. 326(C).
    20. Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3060-:d:561642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.