Hybrid Energy Storage System with Vehicle Body Integrated Super-Capacitor and Li-Ion Battery: Model, Design and Implementation, for Distributed Energy Storage
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Théophile Paul & Tedjani Mesbahi & Sylvain Durand & Damien Flieller & Wilfried Uhring, 2020. "Sizing of Lithium-Ion Battery/Supercapacitor Hybrid Energy Storage System for Forklift Vehicle," Energies, MDPI, vol. 13(17), pages 1-18, September.
- Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
- Prodromidis, George N. & Coutelieris, Frank A., 2012. "Simulations of economical and technical feasibility of battery and flywheel hybrid energy storage systems in autonomous projects," Renewable Energy, Elsevier, vol. 39(1), pages 149-153.
- Li, Guidan & Yang, Zhe & Li, Bin & Bi, Huakun, 2019. "Power allocation smoothing strategy for hybrid energy storage system based on Markov decision process," Applied Energy, Elsevier, vol. 241(C), pages 152-163.
- Muhammad Saqib Nazir & Iftikhar Ahmad & Muhammad Jawad Khan & Yasar Ayaz & Hammad Armghan, 2020. "Adaptive Control of Fuel Cell and Supercapacitor Based Hybrid Electric Vehicles," Energies, MDPI, vol. 13(21), pages 1-21, October.
- Yuanmao Ye & Ka Wai Eric Cheng, 2016. "An Automatic Switched-Capacitor Cell Balancing Circuit for Series-Connected Battery Strings," Energies, MDPI, vol. 9(3), pages 1-15, February.
- Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
- Li, Jianwei & Xiong, Rui & Mu, Hao & Cornélusse, Bertrand & Vanderbemden, Philippe & Ernst, Damien & Yuan, Weijia, 2018. "Design and real-time test of a hybrid energy storage system in the microgrid with the benefit of improving the battery lifetime," Applied Energy, Elsevier, vol. 218(C), pages 470-478.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Khaled Itani & Alexandre De Bernardinis, 2022. "Electrothermal Multicriteria Comparative Analysis of Two Competitive Powertrains Applied to a Two Front Wheel Driven Electric Vehicle during Extreme Regenerative Braking Operations," Energies, MDPI, vol. 15(22), pages 1-27, November.
- Zhangyu Lu & Xizheng Zhang, 2022. "Composite Non-Linear Control of Hybrid Energy-Storage System in Electric Vehicle," Energies, MDPI, vol. 15(4), pages 1-15, February.
- Yuriy Bilan & Marcin Rabe & Katarzyna Widera, 2022. "Distributed Energy Resources: Operational Benefits," Energies, MDPI, vol. 15(23), pages 1-7, November.
- Vishnu P. Sidharthan & Yashwant Kashyap & Panagiotis Kosmopoulos, 2023. "Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles," Energies, MDPI, vol. 16(3), pages 1-26, January.
- Chrispin Tumba Tshiani & Patrice Umenne, 2022. "The Characterization of the Electric Double-Layer Capacitor (EDLC) Using Python/MATLAB/Simulink (PMS)-Hybrid Model," Energies, MDPI, vol. 15(14), pages 1-14, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Barelli, L. & Bidini, G. & Bonucci, F. & Castellini, L. & Fratini, A. & Gallorini, F. & Zuccari, A., 2019. "Flywheel hybridization to improve battery life in energy storage systems coupled to RES plants," Energy, Elsevier, vol. 173(C), pages 937-950.
- Dong Yu & Weiming Zhang & Jianlin Li & Weilin Yang & Dezhi Xu, 2020. "Disturbance Observer-Based Prescribed Performance Fault-Tolerant Control for a Multi-Area Interconnected Power System with a Hybrid Energy Storage System," Energies, MDPI, vol. 13(5), pages 1-15, March.
- Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
- Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
- Danijel Pavković & Mihael Cipek & Zdenko Kljaić & Tomislav Josip Mlinarić & Mario Hrgetić & Davor Zorc, 2018. "Damping Optimum-Based Design of Control Strategy Suitable for Battery/Ultracapacitor Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-26, October.
- Chrispin Tumba Tshiani & Patrice Umenne, 2022. "The Impact of the Electric Double-Layer Capacitor (EDLC) in Reducing Stress and Improving Battery Lifespan in a Hybrid Energy Storage System (HESS) System," Energies, MDPI, vol. 15(22), pages 1-19, November.
- Hou, Jun & Song, Ziyou & Park, Hyeongjun & Hofmann, Heath & Sun, Jing, 2018. "Implementation and evaluation of real-time model predictive control for load fluctuations mitigation in all-electric ship propulsion systems," Applied Energy, Elsevier, vol. 230(C), pages 62-77.
- Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
- da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
- de Wildt, T.E. & Chappin, E.J.L. & van de Kaa, G. & Herder, P.M. & van de Poel, I.R., 2019. "Conflicting values in the smart electricity grid a comprehensive overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 184-196.
- Jamila Snoussi & Seifeddine Ben Elghali & Mohamed Benbouzid & Mohamed Faouzi Mimouni, 2018. "Auto-Adaptive Filtering-Based Energy Management Strategy for Fuel Cell Hybrid Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-20, August.
- Shungang Xu & Kai Gao & Xiaobing Zhang & Kangle Li, 2019. "Double-Layer E-Structure Equalization Circuit for Series Connected Battery Strings," Energies, MDPI, vol. 12(22), pages 1-16, November.
- Yan, Zhe & Zhang, Yongming & Liang, Runqi & Jin, Wenrui, 2020. "An allocative method of hybrid electrical and thermal energy storage capacity for load shifting based on seasonal difference in district energy planning," Energy, Elsevier, vol. 207(C).
- Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
- Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
- Zhu, Jianyun & Chen, Li & Wang, Xuefeng & Yu, Long, 2020. "Bi-level optimal sizing and energy management of hybrid electric propulsion systems," Applied Energy, Elsevier, vol. 260(C).
- Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Development of energy management system based on a rule-based power distribution strategy for hybrid power sources," Energy, Elsevier, vol. 175(C), pages 1055-1066.
- Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
- Shubiao Wang & Longyun Kang & Xiangwei Guo & Zefeng Wang & Ming Liu, 2017. "A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings," Energies, MDPI, vol. 10(7), pages 1-15, July.
- Ma, Bin & Guo, Xing & Li, Penghui, 2023. "Adaptive energy management strategy based on a model predictive control with real-time tuning weight for hybrid energy storage system," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
hybrid energy storage; interleaved converter; Li-ion; super-capacitor; ultra-capacitor; distributed energy storage; configurable EV; electric vehicle;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6553-:d:654608. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.