IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1567-d754153.html
   My bibliography  Save this article

Composite Non-Linear Control of Hybrid Energy-Storage System in Electric Vehicle

Author

Listed:
  • Zhangyu Lu

    (Hunan Institute of Engineering, College of Computer and Communication, Xiangtan 411104, China)

  • Xizheng Zhang

    (Hunan Institute of Engineering, College of Computer and Communication, Xiangtan 411104, China)

Abstract

The underlying circuit control is a key problem of the hybrid energy-storage system (HESS) in electric vehicles (EV). In this paper, a composite non-linear control strategy (CNC) is proposed for the accurate tracking current/voltage of the fully-active HESS by combining the exact feedback linearization method and the sliding mode variable structure control technology. Firstly, by analyzing the circuit characteristics of HESS, the affine non-linear model of fully-active HESS is derived. Then, a rule-based energy management strategy (EMS) is designed to generate the reference current value. Finally, the HESS is linearized by the exact feedback linearization method, and the proposed CNC strategy is developed combined with sliding mode variable structure control technology to ensure fast response, high performance, and robustness. At the same time, the stability proof based on the Lyapunov method is given. Moreover, the performance of the CNC strategy is thoroughly investigated and compared with simulation studies with the traditional PI control and a modified sliding mode control, and its effectiveness under different driving conditions is fully verified.

Suggested Citation

  • Zhangyu Lu & Xizheng Zhang, 2022. "Composite Non-Linear Control of Hybrid Energy-Storage System in Electric Vehicle," Energies, MDPI, vol. 15(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1567-:d:754153
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1567/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1567/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Ziyou & Hou, Jun & Hofmann, Heath & Li, Jianqiu & Ouyang, Minggao, 2017. "Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles," Energy, Elsevier, vol. 122(C), pages 601-612.
    2. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    3. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    4. Peng, Jiankun & He, Hongwen & Xiong, Rui, 2017. "Rule based energy management strategy for a series–parallel plug-in hybrid electric bus optimized by dynamic programming," Applied Energy, Elsevier, vol. 185(P2), pages 1633-1643.
    5. Hoai-Linh T. Nguyen & Bảo-Huy Nguyễn & Thanh Vo-Duy & João Pedro F. Trovão, 2021. "A Comparative Study of Adaptive Filtering Strategies for Hybrid Energy Storage Systems in Electric Vehicles," Energies, MDPI, vol. 14(12), pages 1-23, June.
    6. Sekhar Raghu Raman & Ka-Wai (Eric) Cheng & Xiang-Dang Xue & Yat-Chi Fong & Simon Cheung, 2021. "Hybrid Energy Storage System with Vehicle Body Integrated Super-Capacitor and Li-Ion Battery: Model, Design and Implementation, for Distributed Energy Storage," Energies, MDPI, vol. 14(20), pages 1-22, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi T. P. Nguyen & Bảo-Huy Nguyễn & Minh C. Ta & João Pedro F. Trovão, 2023. "Dual-Motor Dual-Source High Performance EV: A Comprehensive Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    2. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    3. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    4. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    5. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    6. Yuanjian Zhang & Liang Chu & Zicheng Fu & Nan Xu & Chong Guo & Yukuan Li & Zhouhuan Chen & Hanwen Sun & Qin Bai & Yang Ou, 2017. "An Economical Route Planning Method for Plug-In Hybrid Electric Vehicle in Real World," Energies, MDPI, vol. 10(11), pages 1-23, November.
    7. Xu, Nan & Kong, Yan & Yan, Jinyue & Zhang, Yuanjian & Sui, Yan & Ju, Hao & Liu, Heng & Xu, Zhe, 2022. "Global optimization energy management for multi-energy source vehicles based on “Information layer - Physical layer - Energy layer - Dynamic programming” (IPE-DP)," Applied Energy, Elsevier, vol. 312(C).
    8. Song, Ziyou & Hou, Jun & Xu, Shaobing & Ouyang, Minggao & Li, Jianqiu, 2017. "The influence of driving cycle characteristics on the integrated optimization of hybrid energy storage system for electric city buses," Energy, Elsevier, vol. 135(C), pages 91-100.
    9. Wu, Yue & Huang, Zhiwu & Liao, Hongtao & Chen, Bin & Zhang, Xiaoyong & Zhou, Yanhui & Liu, Yongjie & Li, Heng & Peng, Jun, 2020. "Adaptive power allocation using artificial potential field with compensator for hybrid energy storage systems in electric vehicles," Applied Energy, Elsevier, vol. 257(C).
    10. Yang, Bo & Zhu, Tianjiao & Zhang, Xiaoshun & Wang, Jingbo & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Yu, Tao, 2020. "Design and implementation of Battery/SMES hybrid energy storage systems used in electric vehicles: A nonlinear robust fractional-order control approach," Energy, Elsevier, vol. 191(C).
    11. Chen, X.P. & Hewitt, N. & Li, Z.T. & Wu, Q.M. & Yuan, Xufeng & Roskilly, Tony, 2017. "Dynamic programming for optimal operation of a biofuel micro CHP-HES system," Applied Energy, Elsevier, vol. 208(C), pages 132-141.
    12. Yang, Jibin & Xu, Xiaohui & Peng, Yiqiang & Deng, Pengyi & Wu, Xiaohua & Zhang, Jiye, 2022. "Hierarchical energy management of a hybrid propulsion system considering speed profile optimization," Energy, Elsevier, vol. 244(PB).
    13. Vishnu P. Sidharthan & Yashwant Kashyap & Panagiotis Kosmopoulos, 2023. "Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles," Energies, MDPI, vol. 16(3), pages 1-26, January.
    14. Wu, Yue & Huang, Zhiwu & Hofmann, Heath & Liu, Yongjie & Huang, Jiahao & Hu, Xiaosong & Peng, Jun & Song, Ziyou, 2022. "Hierarchical predictive control for electric vehicles with hybrid energy storage system under vehicle-following scenarios," Energy, Elsevier, vol. 251(C).
    15. Song, Ziyou & Zhang, Xiaobin & Li, Jianqiu & Hofmann, Heath & Ouyang, Minggao & Du, Jiuyu, 2018. "Component sizing optimization of plug-in hybrid electric vehicles with the hybrid energy storage system," Energy, Elsevier, vol. 144(C), pages 393-403.
    16. Yang, Chao & Du, Siyu & Li, Liang & You, Sixong & Yang, Yiyong & Zhao, Yue, 2017. "Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle," Applied Energy, Elsevier, vol. 203(C), pages 883-896.
    17. Liu, Hanwu & Lei, Yulong & Fu, Yao & Li, Xingzhong, 2022. "A novel hybrid-point-line energy management strategy based on multi-objective optimization for range-extended electric vehicle," Energy, Elsevier, vol. 247(C).
    18. Jhoan Alejandro Montenegro-Oviedo & Carlos Andres Ramos-Paja & Martha Lucia Orozco-Gutierrez & Edinson Franco-Mejía & Sergio Ignacio Serna-Garcés, 2023. "Adaptive Controller for Bus Voltage Regulation on a DC Microgrid Using a Sepic/Zeta Battery Charger/Discharger," Mathematics, MDPI, vol. 11(4), pages 1-30, February.
    19. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    20. Mpho J. Lencwe & Shyama P. Chowdhury & Thomas O. Olwal, 2018. "A Multi-Stage Approach to a Hybrid Lead Acid Battery and Supercapacitor System for Transport Vehicles," Energies, MDPI, vol. 11(11), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1567-:d:754153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.