IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6378-d650477.html
   My bibliography  Save this article

Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review

Author

Listed:
  • Salvatore Musumeci

    (Dipartimento Energia “G. Ferraris”, Politecnico Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Fabio Mandrile

    (Dipartimento Energia “G. Ferraris”, Politecnico Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Vincenzo Barba

    (Dipartimento Energia “G. Ferraris”, Politecnico Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Marco Palma

    (Efficient Power Conversion (EPC), via Revel 16, 10121 Torino, Italy)

Abstract

The efficiency and power density improvement of power switching converters play a crucial role in energy conversion. In the field of motor control, this requires an increase in the converter switching frequency together with a reduction in the switching legs’ dead time. This target turns out to be complex when using pure silicon switch technologies. Gallium Nitride (GaN) devices have appeared in the switching device arena in recent years and feature much more favorable static and dynamic characteristics compared to pure silicon devices. In the field of motion control, there is a growing use of GaN devices, especially in low voltage applications. This paper provides guidelines for designers on the optimal use of GaN FETs in motor control applications, identifying the advantages and discussing the main issues. In this work, primarily an experimental evaluation of GaN FETs in a low voltage electrical drive is carried out. The experimental investigation is obtained through two different experimental boards to highlight the switching legs’ behavior in several operative conditions and different implementations. In this evaluative approach, the main GaN FETs’ technological aspects and issues are recalled and consequently linked to motion control requirements. The device’s fast switching transients combined with reduced direct resistance contribute to decreased power losses. Thus, in GaN FETs, a high switching frequency with a strong decrease in dead time is achievable. The reduced dead time impact on power loss management and improvement of output waveforms quality is analyzed and discussed in this paper. Furthermore, input filter capacitor design matters correlated with increasing switching frequency are pointed out. Finally, the voltage transients slope effect (dv/dt) is considered and correlated with low voltage motor drives requirements.

Suggested Citation

  • Salvatore Musumeci & Fabio Mandrile & Vincenzo Barba & Marco Palma, 2021. "Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review," Energies, MDPI, vol. 14(19), pages 1-30, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6378-:d:650477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6378/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6378/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baochao Wang & Shili Dong & Shanlin Jiang & Chun He & Jianhui Hu & Hui Ye & Xuezhen Ding, 2019. "A Comparative Study on the Switching Performance of GaN and Si Power Devices for Bipolar Complementary Modulated Converter Legs," Energies, MDPI, vol. 12(6), pages 1-13, March.
    2. Faraci, Giuseppe & Raciti, Angelo & Rizzo, Santi Agatino & Schembra, Giovanni, 2020. "Green wireless power transfer system for a drone fleet managed by reinforcement learning in smart industry," Applied Energy, Elsevier, vol. 259(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salvatore Musumeci, 2023. "Energy Conversion Using Electronic Power Converters: Technologies and Applications," Energies, MDPI, vol. 16(8), pages 1-9, April.
    2. Jelena Loncarski & Vito Giuseppe Monopoli & Vitor Monteiro & Leposava Ristic & Milutin Jovanović, 2022. "Efficiency and Performance Optimization of State-of-the-Art “Multi-Phase, -Level, -Cell, -Port, -Motor” Electrical Drives and Renewable Energy Systems," Energies, MDPI, vol. 15(16), pages 1-3, August.
    3. Rupam Singh & Varaha Satya Bharath Kurukuru & Mohammed Ali Khan, 2023. "Advanced Power Converters and Learning in Diverse Robotic Innovation: A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    4. Chinchul Choi & Wootaik Lee, 2022. "Extended Digital Programmable Low-Pass Filter for Direct Noise Filtering of Three-Phase Variables in Low-Cost AC Drives," Energies, MDPI, vol. 15(6), pages 1-13, March.
    5. Salvatore Musumeci & Vincenzo Barba, 2023. "Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives," Energies, MDPI, vol. 16(9), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Viktor Shevchenko & Bohdan Pakhaliuk & Oleksandr Husev & Oleksandr Veligorskyi & Deniss Stepins & Ryszard Strzelecki, 2020. "Feasibility Study GaN Transistors Application in the Novel Split-Coils Inductive Power Transfer System with T-Type Inverter," Energies, MDPI, vol. 13(17), pages 1-16, September.
    2. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1-26, December.
    3. David Lumbreras & Manel Vilella & Jordi Zaragoza & Néstor Berbel & Josep Jordà & Alfonso Collado, 2021. "Effect of the Heat Dissipation System on Hard-Switching GaN-Based Power Converters for Energy Conversion," Energies, MDPI, vol. 14(19), pages 1-28, October.
    4. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).
    5. Wang, Yibo & Jiang, C.Q. & Mo, Liping & Wang, Xiaosheng & Guo, Weisheng & Zhang, Ben, 2024. "Design and analysis of a multi-segment multi-permeability core for EV wireless charging with enhanced efficiency and thermal performances," Applied Energy, Elsevier, vol. 375(C).
    6. Viktor Shevchenko & Bohdan Pakhaliuk & Janis Zakis & Oleksandr Veligorskyi & Jaroslaw Luszcz & Oleksandr Husev & Oleksandr Lytvyn & Oleksandr Matiushkin, 2021. "Closed-Loop Control System Design for Wireless Charging of Low-Voltage EV Batteries with Time-Delay Constraints," Energies, MDPI, vol. 14(13), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6378-:d:650477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.