IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v259y2020ics0306261919318914.html
   My bibliography  Save this article

Green wireless power transfer system for a drone fleet managed by reinforcement learning in smart industry

Author

Listed:
  • Faraci, Giuseppe
  • Raciti, Angelo
  • Rizzo, Santi Agatino
  • Schembra, Giovanni

Abstract

The optimal management of a fleet of drones is proposed in this paper for providing connectivity to sensors and actuators in Industrial Internet of Things (IIoT) scenarios. The persistent mission without any human intervention on the battery charge is obtained by means of an on-field wind generator supplying a charge station that adopts resonant wireless power transfer. The objective of the fleet management is to provide the best connectivity over the time considering the variability of both the bandwidth request and the wind energy availability. The optimal management is performed by a system controller adopting reinforcement learning (RL) for deciding the number of drones to take off and, consequently, the instantaneous provided bandwidth. A constant charge time of drone battery represents a key element of the system because this enables to strongly reduce the complexity of the system controller task. To this purpose, an adaptive current control for the charge station is introduced to compensate charge time variabilities due to the coupling factor changes caused by misalignments that can occur between a pad and a drone. The results have highlighted that the RL provides good performance improvement in case of green generation. An important aspect arose from this study is the ability of RL to increase the saved energy even if it is not considered as a target of the controller.

Suggested Citation

  • Faraci, Giuseppe & Raciti, Angelo & Rizzo, Santi Agatino & Schembra, Giovanni, 2020. "Green wireless power transfer system for a drone fleet managed by reinforcement learning in smart industry," Applied Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318914
    DOI: 10.1016/j.apenergy.2019.114204
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919318914
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114204?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ali Bin Junaid & Aleksay Konoiko & Yahya Zweiri & M. Necip Sahinkaya & Lakmal Seneviratne, 2017. "Autonomous Wireless Self-Charging for Multi-Rotor Unmanned Aerial Vehicles," Energies, MDPI, vol. 10(6), pages 1-14, June.
    2. Khalid, Muhammad & Aguilera, Ricardo P. & Savkin, Andrey V. & Agelidis, Vassilios G., 2018. "On maximizing profit of wind-battery supported power station based on wind power and energy price forecasting," Applied Energy, Elsevier, vol. 211(C), pages 764-773.
    3. Chiang, Wen-Chyuan & Li, Yuyu & Shang, Jennifer & Urban, Timothy L., 2019. "Impact of drone delivery on sustainability and cost: Realizing the UAV potential through vehicle routing optimization," Applied Energy, Elsevier, vol. 242(C), pages 1164-1175.
    4. Lin, Boqiang & Chen, Yufang, 2019. "Impacts of policies on innovation in wind power technologies in China," Applied Energy, Elsevier, vol. 247(C), pages 682-691.
    5. Bi, Zicheng & Keoleian, Gregory A. & Ersal, Tulga, 2018. "Wireless charger deployment for an electric bus network: A multi-objective life cycle optimization," Applied Energy, Elsevier, vol. 225(C), pages 1090-1101.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frechter, Yotam & Kuperman, Alon, 2020. "Analysis and design of inductive wireless power transfer link for feedback-less power delivery to enclosed compartment," Applied Energy, Elsevier, vol. 278(C).
    2. Salvatore Musumeci & Fabio Mandrile & Vincenzo Barba & Marco Palma, 2021. "Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review," Energies, MDPI, vol. 14(19), pages 1-30, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yichen Lu & Chao Yang & Jun Yang, 2022. "A multi-objective humanitarian pickup and delivery vehicle routing problem with drones," Annals of Operations Research, Springer, vol. 319(1), pages 291-353, December.
    2. Abdullah Mohiuddin & Tarek Taha & Yahya Zweiri & Dongming Gan, 2019. "UAV Payload Transportation via RTDP Based Optimized Velocity Profiles," Energies, MDPI, vol. 12(16), pages 1-25, August.
    3. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    4. Woo, Hyeon & Son, Yongju & Cho, Jintae & Kim, Sung-Yul & Choi, Sungyun, 2023. "Optimal expansion planning of electric vehicle fast charging stations," Applied Energy, Elsevier, vol. 342(C).
    5. Karl-Arne Johannessen & Hans Comtet & Erik Fosse, 2021. "A Drone Logistic Model for Transporting the Complete Analytic Volume of a Large-Scale University Laboratory," IJERPH, MDPI, vol. 18(9), pages 1-19, April.
    6. Chen, Hao & Chen, Jiachuan & Han, Guoyi & Cui, Qi, 2022. "Winding down the wind power curtailment in China: What made the difference?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Matjaz Rozman & Michael Fernando & Bamidele Adebisi & Khaled M. Rabie & Tim Collins & Rupak Kharel & Augustine Ikpehai, 2017. "A New Technique for Reducing Size of a WPT System Using Two-Loop Strongly-Resonant Inductors," Energies, MDPI, vol. 10(10), pages 1-18, October.
    8. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    9. Jiang, Xin & Jin, Yang & Zheng, Xueyuan & Hu, Guobao & Zeng, Qingshan, 2020. "Optimal configuration of grid-side battery energy storage system under power marketization," Applied Energy, Elsevier, vol. 272(C).
    10. Li, Yang & Vilathgamuwa, Mahinda & Choi, San Shing & Xiong, Binyu & Tang, Jinrui & Su, Yixin & Wang, Yu, 2020. "Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability," Applied Energy, Elsevier, vol. 260(C).
    11. Wenhao Zhuo & Andrey V. Savkin, 2019. "Profit Maximizing Control of a Microgrid with Renewable Generation and BESS Based on a Battery Cycle Life Model and Energy Price Forecasting," Energies, MDPI, vol. 12(15), pages 1-17, July.
    12. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    13. Nyaaba, Albert Apotele & Ayamga, Matthew, 2021. "Intricacies of medical drones in healthcare delivery: Implications for Africa," Technology in Society, Elsevier, vol. 66(C).
    14. Tommaso Campi & Silvano Cruciani & Mauro Feliziani, 2018. "Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil," Energies, MDPI, vol. 11(2), pages 1-15, February.
    15. He, Zhengxia & Cao, Changshuai & Kuai, Leyi & Zhou, Yanqing & Wang, Jianming, 2022. "Impact of policies on wind power innovation at different income levels: Regional differences in China based on dynamic panel estimation," Technology in Society, Elsevier, vol. 71(C).
    16. Zeng, Ziling & Wang, Tingsong & Qu, Xiaobo, 2024. "En-route charge scheduling for an electric bus network: Stochasticity and real-world practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    17. Joonyup Eun & Byung Duk Song & Sangbok Lee & Dae-Eun Lim, 2019. "Mathematical Investigation on the Sustainability of UAV Logistics," Sustainability, MDPI, vol. 11(21), pages 1-15, October.
    18. Liu, Jinpeng & Lin, Yingwen & Jiang, Mingyue & Guo, Xia, 2024. "Exploring policy support for wind power development from a balancing perspective - A study of dynamic strategies based on evolutionary game," Energy Policy, Elsevier, vol. 188(C).
    19. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    20. Ju, Liwei & Bai, Xiping & Li, Gen & Gan, Wei & Qi, Xin & Ye, Fan, 2024. "Two-stage robust transaction optimization model and benefit allocation strategy for new energy power stations with shared energy storage considering green certificate and virtual energy storage mode," Applied Energy, Elsevier, vol. 362(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:259:y:2020:i:c:s0306261919318914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.