IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7156-d1263145.html
   My bibliography  Save this article

Advanced Power Converters and Learning in Diverse Robotic Innovation: A Review

Author

Listed:
  • Rupam Singh

    (Mærsk Mc Kinney Møller Instituttet, SDU Robotics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark)

  • Varaha Satya Bharath Kurukuru

    (Research Division Power Electronics, Silicon Austria Labs GmbH, Europastraße 12, 9524 Villach, Austria)

  • Mohammed Ali Khan

    (Centre for Industrial Electronics (CIE), University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark)

Abstract

This paper provides a comprehensive review of the integration of advanced power management systems and learning techniques in the field of robotics. It identifies the critical roles these areas play in reshaping the capabilities of robotic systems across diverse applications. To begin, it highlights the significance of efficient power usage in modern robotics. The paper explains how advanced power converters effectively control voltage, manage current and shape waveforms, thereby optimizing energy utilization. These converters ensure that robotic components receive the precise voltage levels they require, leading to improved motor performance and enabling precise control over motor behavior. Consequently, this results in extended operational times and increased design flexibility. Furthermore, the review explores the integration of learning approaches, emphasizing their substantial impact on robotic perception, decision-making and autonomy. It discusses the application of techniques such as reinforcement learning, supervised learning and unsupervised learning, showcasing their applications in areas like object recognition, semantic segmentation, sensor fusion and anomaly detection. By utilizing these learning methods, robots become more intelligent, adaptable and capable of autonomous operation across various domains. By examining the interaction between advanced power management and learning integration, this review anticipates a future where robots operate with increased efficiency, adapt to various tasks and drive technological innovation across a wide range of industries.

Suggested Citation

  • Rupam Singh & Varaha Satya Bharath Kurukuru & Mohammed Ali Khan, 2023. "Advanced Power Converters and Learning in Diverse Robotic Innovation: A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7156-:d:1263145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tom Verstraten & Md Sazzad Hosen & Maitane Berecibar & Bram Vanderborght, 2023. "Selecting Suitable Battery Technologies for Untethered Robot," Energies, MDPI, vol. 16(13), pages 1-21, June.
    2. DonHee Lee & Seong No Yoon, 2021. "Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges," IJERPH, MDPI, vol. 18(1), pages 1-18, January.
    3. Biemann, Marco & Scheller, Fabian & Liu, Xiufeng & Huang, Lizhen, 2021. "Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control," Applied Energy, Elsevier, vol. 298(C).
    4. Sijing Zhu & Zheng Fan & Baoquan Feng & Runze Shi & Zexin Jiang & Ying Peng & Jie Gao & Lei Miao & Kunihito Koumoto, 2022. "Review on Wearable Thermoelectric Generators: From Devices to Applications," Energies, MDPI, vol. 15(9), pages 1-27, May.
    5. Salvatore Musumeci & Fabio Mandrile & Vincenzo Barba & Marco Palma, 2021. "Low-Voltage GaN FETs in Motor Control Application; Issues and Advantages: A Review," Energies, MDPI, vol. 14(19), pages 1-30, October.
    6. Nesma M Ashraf & Reham R Mostafa & Rasha H Sakr & M Z Rashad, 2021. "Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-24, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
    3. Chinchul Choi & Wootaik Lee, 2022. "Extended Digital Programmable Low-Pass Filter for Direct Noise Filtering of Three-Phase Variables in Low-Cost AC Drives," Energies, MDPI, vol. 15(6), pages 1-13, March.
    4. Zhang, Bin & Hu, Weihao & Ghias, Amer M.Y.M. & Xu, Xiao & Chen, Zhe, 2022. "Multi-agent deep reinforcement learning-based coordination control for grid-aware multi-buildings," Applied Energy, Elsevier, vol. 328(C).
    5. Keerthana Sivamayil & Elakkiya Rajasekar & Belqasem Aljafari & Srete Nikolovski & Subramaniyaswamy Vairavasundaram & Indragandhi Vairavasundaram, 2023. "A Systematic Study on Reinforcement Learning Based Applications," Energies, MDPI, vol. 16(3), pages 1-23, February.
    6. Claus Zippel & Sabine Bohnet-Joschko, 2021. "Rise of Clinical Studies in the Field of Machine Learning: A Review of Data Registered in ClinicalTrials.gov," IJERPH, MDPI, vol. 18(10), pages 1-14, May.
    7. Lei Miao & Sijing Zhu & Chengyan Liu & Jie Gao & Zhongwei Zhang & Ying Peng & Jun-Liang Chen & Yangfan Gao & Jisheng Liang & Takao Mori, 2024. "Comfortable wearable thermoelectric generator with high output power," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Pinto, Giuseppe & Kathirgamanathan, Anjukan & Mangina, Eleni & Finn, Donal P. & Capozzoli, Alfonso, 2022. "Enhancing energy management in grid-interactive buildings: A comparison among cooperative and coordinated architectures," Applied Energy, Elsevier, vol. 310(C).
    9. Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).
    10. Wang, Xuezheng & Dong, Bing, 2024. "Long-term experimental evaluation and comparison of advanced controls for HVAC systems," Applied Energy, Elsevier, vol. 371(C).
    11. Nasrin Sultana & Ekaterina Turkina, 2023. "Collaboration for Sustainable Innovation Ecosystem: The Role of Intermediaries," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    12. Homod, Raad Z. & Togun, Hussein & Kadhim Hussein, Ahmed & Noraldeen Al-Mousawi, Fadhel & Yaseen, Zaher Mundher & Al-Kouz, Wael & Abd, Haider J. & Alawi, Omer A. & Goodarzi, Marjan & Hussein, Omar A., 2022. "Dynamics analysis of a novel hybrid deep clustering for unsupervised learning by reinforcement of multi-agent to energy saving in intelligent buildings," Applied Energy, Elsevier, vol. 313(C).
    13. Julien Issa & Raphael Olszewski & Marta Dyszkiewicz-Konwińska, 2022. "The Effectiveness of Semi-Automated and Fully Automatic Segmentation for Inferior Alveolar Canal Localization on CBCT Scans: A Systematic Review," IJERPH, MDPI, vol. 19(1), pages 1-10, January.
    14. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Peng, Pei & Li, Wenqiang & Shi, Xing, 2023. "Cross temporal-spatial transferability investigation of deep reinforcement learning control strategy in the building HVAC system level," Energy, Elsevier, vol. 263(PB).
    15. Jelena Loncarski & Vito Giuseppe Monopoli & Vitor Monteiro & Leposava Ristic & Milutin Jovanović, 2022. "Efficiency and Performance Optimization of State-of-the-Art “Multi-Phase, -Level, -Cell, -Port, -Motor” Electrical Drives and Renewable Energy Systems," Energies, MDPI, vol. 15(16), pages 1-3, August.
    16. Carl B. Roth & Andreas Papassotiropoulos & Annette B. Brühl & Undine E. Lang & Christian G. Huber, 2021. "Psychiatry in the Digital Age: A Blessing or a Curse?," IJERPH, MDPI, vol. 18(16), pages 1-32, August.
    17. Mahbod, Muhammad Haiqal Bin & Chng, Chin Boon & Lee, Poh Seng & Chui, Chee Kong, 2022. "Energy saving evaluation of an energy efficient data center using a model-free reinforcement learning approach," Applied Energy, Elsevier, vol. 322(C).
    18. Zhang, Qingang & Zeng, Wei & Lin, Qinjie & Chng, Chin-Boon & Chui, Chee-Kong & Lee, Poh-Seng, 2023. "Deep reinforcement learning towards real-world dynamic thermal management of data centers," Applied Energy, Elsevier, vol. 333(C).
    19. Shen, Rendong & Zhong, Shengyuan & Wen, Xin & An, Qingsong & Zheng, Ruifan & Li, Yang & Zhao, Jun, 2022. "Multi-agent deep reinforcement learning optimization framework for building energy system with renewable energy," Applied Energy, Elsevier, vol. 312(C).
    20. Wang, Yijian & Cui, Yang & Li, Yang & Xu, Yang, 2023. "Collaborative optimization of multi-microgrids system with shared energy storage based on multi-agent stochastic game and reinforcement learning," Energy, Elsevier, vol. 280(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7156-:d:1263145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.