IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i4p908-d496410.html
   My bibliography  Save this article

Evaluation of Synergies of a Biomass Power Plant and a Biogas Station with a Carbon Capture System

Author

Listed:
  • Pilar Lisbona

    (Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Av. de Ranillas 1-D, 50018 Zaragoza, Spain)

  • Sara Pascual

    (Departamento de Ingeniería Mecánica, EINA, Campus Río Ebro, Universidad de Zaragoza, María de Luna 3, 50018 Zaragoza, Spain)

  • Virginia Pérez

    (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 42220 Soria, Spain)

Abstract

The global carbon emissions from the tertiary sector have increased during the last years, becoming a target sector for carbon capture technologies. This study analyzes the potential application of a carbon capture system (CCS) to the usage of biogas from a livestock waste treatment plant (LWTP) and solid biomass. The proposed BECCS system fulfils the requirement of energy demands of the LWTP and generates electricity. The CCS is sized to consume the biogas produced and the selected operation parameters ensure a high capture efficiency. The BECCS is completed by a Rankine cycle fed by solid biomass and waste heat from the capture process is sized and implemented to produce electricity and steam. The proposed concept handles 1534 kW of solid biomass and 1398 kW of biogas to produce 746.20 kWe and cover the heat demand of a LWTP, 597 kWth. The avoided CO 2 emissions sum up to 1620 ton CO 2 /year. The economic calculations show the limitation of this concept deployment under current prices of electricity and CO 2 allowances. Results show the potential feasibility under future scenarios with 5 to 6 payback periods whenever public policies support the use of CCS and EU ETS evolves towards higher prices of carbon allowances.

Suggested Citation

  • Pilar Lisbona & Sara Pascual & Virginia Pérez, 2021. "Evaluation of Synergies of a Biomass Power Plant and a Biogas Station with a Carbon Capture System," Energies, MDPI, vol. 14(4), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:908-:d:496410
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/4/908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/4/908/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peiyuan Pan & Meiyan Zhang & Gang Xu & Heng Chen & Xiaona Song & Tong Liu, 2020. "Thermodynamic and Economic Analyses of a New Waste-to-Energy System Incorporated with a Biomass-Fired Power Plant," Energies, MDPI, vol. 13(17), pages 1-20, August.
    2. Antonio Coppola & Fabrizio Scala, 2020. "A Preliminary Techno-Economic Analysis on the Calcium Looping Process with Simultaneous Capture of CO 2 and SO 2 from a Coal-Based Combustion Power Plant," Energies, MDPI, vol. 13(9), pages 1-9, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Zieliński & Joanna Kazimierowicz & Marcin Dębowski, 2022. "Advantages and Limitations of Anaerobic Wastewater Treatment—Technological Basics, Development Directions, and Technological Innovations," Energies, MDPI, vol. 16(1), pages 1-39, December.
    2. Xintao Li & Xue’er Xu & Diyi Liu & Mengqiao Han & Siqi Li, 2022. "Consumers’ Willingness to Pay for the Solar Photovoltaic System in the Post-Subsidy Era: A Comparative Analysis under an Urban-Rural Divide," Energies, MDPI, vol. 15(23), pages 1-22, November.
    3. Paweł Ziółkowski & Paweł Madejski & Milad Amiri & Tomasz Kuś & Kamil Stasiak & Navaneethan Subramanian & Halina Pawlak-Kruczek & Janusz Badur & Łukasz Niedźwiecki & Dariusz Mikielewicz, 2021. "Thermodynamic Analysis of Negative CO 2 Emission Power Plant Using Aspen Plus, Aspen Hysys, and Ebsilon Software," Energies, MDPI, vol. 14(19), pages 1-27, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Vyacheslav V. Rodaev & Svetlana S. Razlivalova, 2021. "Performance and Durability of the Zr-Doped CaO Sorbent under Cyclic Carbonation–Decarbonation at Different Operating Parameters," Energies, MDPI, vol. 14(16), pages 1-9, August.
    3. Chen Yang & Jingxian Kong & Xinji Chen & Zhijiang Jin & Jinyuan Qian, 2024. "Research on the Arrangement Scheme of Spirally Twisted Tape Inserts in a Grate Furnace," Energies, MDPI, vol. 17(21), pages 1-23, October.
    4. Savelii Kukharets & Algirdas Jasinskas & Gennadii Golub & Olena Sukmaniuk & Taras Hutsol & Krzysztof Mudryk & Jonas Čėsna & Szymon Glowacki & Iryna Horetska, 2023. "The Experimental Study of the Efficiency of the Gasification Process of the Fast-Growing Willow Biomass in a Downdraft Gasifier," Energies, MDPI, vol. 16(2), pages 1-12, January.
    5. Xue, Xiaojun & Lv, Jiayang & Chen, Heng & Xu, Gang & Li, Qiubai, 2022. "Thermodynamic and economic analyses of a new compressed air energy storage system incorporated with a waste-to-energy plant and a biogas power plant," Energy, Elsevier, vol. 261(PB).
    6. Ouyang, Denghao & Wang, Fangqian & Hong, Jinpeng & Gao, Daihong & Zhao, Xuebing, 2021. "Ferricyanide and vanadyl (V) mediated electron transfer for converting lignin to electricity by liquid flow fuel cell with power density reaching 200 mW/cm2," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:908-:d:496410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.