IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6302-d648991.html
   My bibliography  Save this article

Reactivity Model as a Tool to Compare the Combustion Process in Aviation Turbine Engines Powered by Synthetic Fuels

Author

Listed:
  • Tomasz Białecki

    (Fuels and Lubricants Division, Air Force Institute of Technology (ITWL), 01-494 Warsaw, Poland)

  • Wojciech Dzięgielewski

    (Fuels and Lubricants Division, Air Force Institute of Technology (ITWL), 01-494 Warsaw, Poland)

  • Mirosław Kowalski

    (Fuels and Lubricants Division, Air Force Institute of Technology (ITWL), 01-494 Warsaw, Poland)

  • Andrzej Kulczycki

    (Fuels and Lubricants Division, Air Force Institute of Technology (ITWL), 01-494 Warsaw, Poland)

Abstract

The paper aims to verify the thesis that the reactivity model, developed in earlier research, can be used to compare the fuels combustion processes in turbine engines, which is important for predicting the behavior of different alternative fuels in combustion process. Synthetic blending components from alcohol to jet and hydroprocessed esters and fatty acids technologies and their blends with conventional jet fuel were used in tests. The undertaken laboratory tests reveal the differences between the properties of the tested fuels. Bench tests were carried out on a test rig with a miniature turbojet engine, according to authorial methodology. For each blend, on selected points of rotational speed the carbon oxide concentration in the exhaust gases was recorded. The obtained results allowed the formulation of empirical power functions describing relations between carbon oxide concentration and fuel mass flow rate. Based on general assumptions, the reactivity model was adopted to compare the combustion processes of the different fuels in turbine engines. The directions of further research on the development of the proposed model were indicated.

Suggested Citation

  • Tomasz Białecki & Wojciech Dzięgielewski & Mirosław Kowalski & Andrzej Kulczycki, 2021. "Reactivity Model as a Tool to Compare the Combustion Process in Aviation Turbine Engines Powered by Synthetic Fuels," Energies, MDPI, vol. 14(19), pages 1-16, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6302-:d:648991
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6302/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6302/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bartosz Gawron & Tomasz Białecki & Anna Janicka & Tomasz Suchocki, 2020. "Combustion and Emissions Characteristics of the Turbine Engine Fueled with HEFA Blends from Different Feedstocks," Energies, MDPI, vol. 13(5), pages 1-12, March.
    2. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    3. Iman K. Reksowardojo & Long H. Duong & Rais Zain & Firman Hartono & Septhian Marno & Wawan Rustyawan & Nelliza Putri & Wisasurya Jatiwiramurti & Bayu Prabowo, 2020. "Performance and Exhaust Emissions of a Gas-Turbine Engine Fueled with Biojet/Jet A-1 Blends for the Development of Aviation Biofuel in Tropical Regions," Energies, MDPI, vol. 13(24), pages 1-14, December.
    4. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Talal Yusaf & K. Kadirgama & Steve Hall & Louis Fernandes, 2022. "The Future of Sustainable Aviation Fuels, Challenges and Solutions," Energies, MDPI, vol. 15(21), pages 1-4, November.
    2. Mohsen Ayoobi & Pedro R. Resende & Alexandre M. Afonso, 2022. "Numerical Investigations of Combustion—An Overview," Energies, MDPI, vol. 15(9), pages 1-5, April.
    3. Urszula Kaźmierczak & Wojciech Dzięgielewski & Andrzej Kulczycki, 2022. "Miscibility of Aviation Turbine Engine Fuels Containing Various Synthetic Components," Energies, MDPI, vol. 15(17), pages 1-25, August.
    4. Bartosz Gawron & Aleksander Górniak & Tomasz Białecki & Anna Janicka & Radosław Włostowski & Adriana Włóka & Justyna Molska & Maciej Zawiślak, 2021. "Impact of a Synthetic Component on the Emission of Volatile Organic Compounds during the Combustion Process in a Miniature Turbine Engine," Energies, MDPI, vol. 14(24), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Gawron & Aleksander Górniak & Tomasz Białecki & Anna Janicka & Radosław Włostowski & Adriana Włóka & Justyna Molska & Maciej Zawiślak, 2021. "Impact of a Synthetic Component on the Emission of Volatile Organic Compounds during the Combustion Process in a Miniature Turbine Engine," Energies, MDPI, vol. 14(24), pages 1-9, December.
    2. Paweł Niszczota & Marian Gieras, 2021. "Effect of Adding Emulsifier to Fuel on Work Efficiency and Gas Turbine Emissions," Energies, MDPI, vol. 14(17), pages 1-15, August.
    3. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    5. Lin, Xiaona & Kong, Lingshuai & Ren, Xiajin & Zhang, Donghong & Cai, Hongzhen & Lei, Hanwu, 2021. "Catalytic co-pyrolysis of torrefied poplar wood and high-density polyethylene over hierarchical HZSM-5 for mono-aromatics production," Renewable Energy, Elsevier, vol. 164(C), pages 87-95.
    6. Yang, Haiping & Chen, Zhiqun & Chen, Wei & Chen, Yingquan & Wang, Xianhua & Chen, Hanping, 2020. "Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis," Energy, Elsevier, vol. 210(C).
    7. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    8. Remigiusz Jasiński & Paula Kurzawska & Radosław Przysowa, 2021. "Characterization of Particle Emissions from a DGEN 380 Small Turbofan Fueled with ATJ Blends," Energies, MDPI, vol. 14(12), pages 1-12, June.
    9. Chen, Wei & Fang, Yang & Li, Kaixu & Chen, Zhiqun & Xia, Mingwei & Gong, Meng & Chen, Yingquan & Yang, Haiping & Tu, Xin & Chen, Hanping, 2020. "Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products," Applied Energy, Elsevier, vol. 260(C).
    10. Huo, Erguang & Duan, Dengle & Lei, Hanwu & Liu, Chao & Zhang, Yayun & Wu, Jie & Zhao, Yunfeng & Huang, Zhiyang & Qian, Moriko & Zhang, Qingfa & Lin, Xiaona & Wang, Chenxi & Mateo, Wendy & Villota, Elm, 2020. "Phenols production form Douglas fir catalytic pyrolysis with MgO and biomass-derived activated carbon catalysts," Energy, Elsevier, vol. 199(C).
    11. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    12. Grigore Cican & Daniel Eugeniu Crunteanu & Radu Mirea & Laurentiu Constantin Ceatra & Constantin Leventiu, 2023. "Biodiesel from Recycled Sunflower and Palm Oil—A Sustainable Fuel for Microturbo-Engines Used in Airside Applications," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    13. María Teresa Martín & Juan Luis Aguirre & Juan Baena-González & Sergio González & Roberto Pérez-Aparicio & Leticia Saiz-Rodríguez, 2022. "Influence of Specific Power on the Solid and Liquid Products Obtained in the Microwave-Assisted Pyrolysis of End-of-Life Tires," Energies, MDPI, vol. 15(6), pages 1-17, March.
    14. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    15. Zhao, Xiang & You, Fengqi, 2021. "Waste respirator processing system for public health protection and climate change mitigation under COVID-19 pandemic: Novel process design and energy, environmental, and techno-economic perspectives," Applied Energy, Elsevier, vol. 283(C).
    16. Jerzy MERKISZ & Remigiusz JASIŃSKI & Anna ŁĘGOWIK & Aleksander OLEJNIK, 2021. "Exhaust Emissions Of Jet Engines Powered By Biofuel," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(4), pages 199-206, December.
    17. Duan, Dengle & Feng, Zhiqiang & Dong, Xiaoyong & Chen, Xiaoru & Zhang, Yayun & Wan, Kun & Wang, Yunpu & Wang, Qin & Xiao, Gengsheng & Liu, Huifan & Ruan, Roger, 2021. "Improving bio-oil quality from low-density polyethylene pyrolysis: Effects of varying activation and pyrolysis parameters," Energy, Elsevier, vol. 232(C).
    18. Yao, Dingding & Wang, Chi-Hwa, 2020. "Pyrolysis and in-line catalytic decomposition of polypropylene to carbon nanomaterials and hydrogen over Fe- and Ni-based catalysts," Applied Energy, Elsevier, vol. 265(C).
    19. Augusto Fernando de Freitas Costa & Caio Campos Ferreira & Simone Patrícia Aranha da Paz & Marcelo Costa Santos & Luiz Gabriel Santos Moreira & Neyson Martins Mendonça & Fernanda Paula da Costa Assunç, 2023. "Catalytic Upgrading of Plastic Waste of Electric and Electronic Equipment (WEEE) Pyrolysis Vapors over Si–Al Ash Pellets in a Two-Stage Reactor," Energies, MDPI, vol. 16(1), pages 1-32, January.
    20. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6302-:d:648991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.