IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6187-d897874.html
   My bibliography  Save this article

Miscibility of Aviation Turbine Engine Fuels Containing Various Synthetic Components

Author

Listed:
  • Urszula Kaźmierczak

    (Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warsaw, Poland)

  • Wojciech Dzięgielewski

    (Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warsaw, Poland)

  • Andrzej Kulczycki

    (Air Force Institute of Technology, ul. Księcia Bolesława 6, 01-494 Warsaw, Poland)

Abstract

This article reviews a study of the impact of synthetic biocomponents on the operational properties of aviation turbine engine fuels. The objective of the research was to simulate the functioning of aircraft fuel supply systems during the popularization of synthetic components and to provide a preliminary study of the impact of particles of various synthetic components on processes within aviation turbine engine fuel systems—particularly the aviation turbine engine combustion system. The authors produced Jet A-1 fuel blends with two selected synthetic components A and B, accepted as per the ASTM D4054 procedure. The concentrations of each of the components were selected to simulate fuel compositions in an aircraft tank that could result from supplying fuel with different synthetic components. Such blends were studied using selected laboratory tests, lubricity using the BOCLE rig and an engine test using the MiniJetRig stand. The parameters of the following power functions were adopted as criteria for a comparison of the combustion process involving fuels of various chemical structure: CO = am f n and (T 3max − T 2 )/(T 3min − T 2 ) = a 11 m f n1 , where CO—carbon monoxide content in exhaust gas; T 3max —maximum combustion chamber temperature; T 3min —minimum combustion chamber temperature; T 2 —temperature upstream the combustion chamber; m f —fuel mass flow rate. The test results for blends containing both synthetic components A and B were compared with change trends of similar parameters in fuels containing single synthetic components. Hard-to-predict and hard-to-define trend line deviations for the blends of both components A and B were observed. The obtained research results indicated a need to study the miscibility of fuels containing various synthetic components and to improve miscibility research methodologies.

Suggested Citation

  • Urszula Kaźmierczak & Wojciech Dzięgielewski & Andrzej Kulczycki, 2022. "Miscibility of Aviation Turbine Engine Fuels Containing Various Synthetic Components," Energies, MDPI, vol. 15(17), pages 1-25, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6187-:d:897874
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6187/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6187/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Białecki & Wojciech Dzięgielewski & Mirosław Kowalski & Andrzej Kulczycki, 2021. "Reactivity Model as a Tool to Compare the Combustion Process in Aviation Turbine Engines Powered by Synthetic Fuels," Energies, MDPI, vol. 14(19), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Detsios & Stella Theodoraki & Leda Maragoudaki & Konstantinos Atsonios & Panagiotis Grammelis & Nikolaos G. Orfanoudakis, 2023. "Recent Advances on Alternative Aviation Fuels/Pathways: A Critical Review," Energies, MDPI, vol. 16(4), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartosz Gawron & Aleksander Górniak & Tomasz Białecki & Anna Janicka & Radosław Włostowski & Adriana Włóka & Justyna Molska & Maciej Zawiślak, 2021. "Impact of a Synthetic Component on the Emission of Volatile Organic Compounds during the Combustion Process in a Miniature Turbine Engine," Energies, MDPI, vol. 14(24), pages 1-9, December.
    2. Talal Yusaf & K. Kadirgama & Steve Hall & Louis Fernandes, 2022. "The Future of Sustainable Aviation Fuels, Challenges and Solutions," Energies, MDPI, vol. 15(21), pages 1-4, November.
    3. Mohsen Ayoobi & Pedro R. Resende & Alexandre M. Afonso, 2022. "Numerical Investigations of Combustion—An Overview," Energies, MDPI, vol. 15(9), pages 1-5, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6187-:d:897874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.