IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1277-d330548.html
   My bibliography  Save this article

Combustion and Emissions Characteristics of the Turbine Engine Fueled with HEFA Blends from Different Feedstocks

Author

Listed:
  • Bartosz Gawron

    (Division for Fuels and Lubricants, Air Force Institute of Technology, 01-494 Warsaw, Poland)

  • Tomasz Białecki

    (Division for Fuels and Lubricants, Air Force Institute of Technology, 01-494 Warsaw, Poland)

  • Anna Janicka

    (Division of Automotive Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw, Poland)

  • Tomasz Suchocki

    (Turbine Department, Institute of Fluid Flow Machinery, Polish Academy of Sciences, Fiszera 14, 80-231 Gdansk, Poland)

Abstract

In the next decade, due to the desire for significant reduction in the carbon footprint left by the aviation sector and the development of a sustainable alternatives to petroleum, fuel from renewable sources will play an increasing role as a propellant for turbine aircraft engines. Currently, apart from five types of jet fuel containing synthesized hydrocarbons that are certified by the ASTM D7566 standard, there is yet another synthetic blending component that is at the stage of testing and certification. Hydroprocessed esters and fatty acids enable the production of a synthetic component for jet fuel from any form of native fat or oil. Used feedstock affects the final synthetic blending component composition and consequently the properties of the blend for jet fuel and, as a result, the operation of turbine engines. A specialized laboratory test rig with a miniature turbojet engine was used for research, which is an interesting alternative to complex and expensive tests with full scale turbine engines. The results of this study revealed the differences in the parameters of engine performance and emission characteristics between tested fuels with synthetic blending components and neat jet fuel. The synthetic blending component was obtained from two different feedstock. Noticeable changes were obtained for fuel consumption, CO and NO x emissions. With the addition of the hydroprocessed esters and fatty acids (HEFA) component, the fuel consumption and CO emissions decrease. The opposite trend was observed for NO x emission. The tests presented in this article are a continuation of the authors’ research area related to alternative fuels for aviation.

Suggested Citation

  • Bartosz Gawron & Tomasz Białecki & Anna Janicka & Tomasz Suchocki, 2020. "Combustion and Emissions Characteristics of the Turbine Engine Fueled with HEFA Blends from Different Feedstocks," Energies, MDPI, vol. 13(5), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1277-:d:330548
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gutiérrez-Antonio, C. & Gómez-Castro, F.I. & de Lira-Flores, J.A. & Hernández, S., 2017. "A review on the production processes of renewable jet fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 709-729.
    2. Chen, Longfei & Zhang, Zhichao & Lu, Yiji & Zhang, Chi & Zhang, Xin & Zhang, Cuiqi & Roskilly, Anthony Paul, 2017. "Experimental study of the gaseous and particulate matter emissions from a gas turbine combustor burning butyl butyrate and ethanol blends," Applied Energy, Elsevier, vol. 195(C), pages 693-701.
    3. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    4. Chuck, Christopher J. & Donnelly, Joseph, 2014. "The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene," Applied Energy, Elsevier, vol. 118(C), pages 83-91.
    5. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Białecki & Wojciech Dzięgielewski & Mirosław Kowalski & Andrzej Kulczycki, 2021. "Reactivity Model as a Tool to Compare the Combustion Process in Aviation Turbine Engines Powered by Synthetic Fuels," Energies, MDPI, vol. 14(19), pages 1-16, October.
    2. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    3. Remigiusz Jasiński & Paula Kurzawska & Radosław Przysowa, 2021. "Characterization of Particle Emissions from a DGEN 380 Small Turbofan Fueled with ATJ Blends," Energies, MDPI, vol. 14(12), pages 1-12, June.
    4. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    5. Nihasigaye, Pierre Boris & Zhou, Guanyu & Yang, Xiaoyi, 2021. "Modelling spray performance of alternative aviation fuel," Energy, Elsevier, vol. 224(C).
    6. Paweł Niszczota & Marian Gieras, 2021. "Effect of Adding Emulsifier to Fuel on Work Efficiency and Gas Turbine Emissions," Energies, MDPI, vol. 14(17), pages 1-15, August.
    7. Bartosz Gawron & Aleksander Górniak & Tomasz Białecki & Anna Janicka & Radosław Włostowski & Adriana Włóka & Justyna Molska & Maciej Zawiślak, 2021. "Impact of a Synthetic Component on the Emission of Volatile Organic Compounds during the Combustion Process in a Miniature Turbine Engine," Energies, MDPI, vol. 14(24), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Jackson Hwa Keen & Gan, Yong Yang & Ong, Hwai Chyuan & Lau, Beng Fye & Chen, Wei-Hsin & Chong, Cheng Tung & Ling, Tau Chuan & Klemeš, Jiří Jaromír, 2021. "Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Buffi, Marco & Valera-Medina, Agustin & Marsh, Richard & Pugh, Daniel & Giles, Anthony & Runyon, Jon & Chiaramonti, David, 2017. "Emissions characterization tests for hydrotreated renewable jet fuel from used cooking oil and its blends," Applied Energy, Elsevier, vol. 201(C), pages 84-93.
    3. Gunerhan, Ali & Altuntas, Onder & Caliskan, Hakan, 2023. "Utilization of renewable and sustainable aviation biofuels from waste tyres for sustainable aviation transport sector," Energy, Elsevier, vol. 276(C).
    4. Zheng, Lukai & Cronly, James & Ubogu, Emamode & Ahmed, Ihab & Zhang, Yang & Khandelwal, Bhupendra, 2019. "Experimental investigation on alternative fuel combustion performance using a gas turbine combustor," Applied Energy, Elsevier, vol. 238(C), pages 1530-1542.
    5. El-Zoheiry, Radwan M. & EL-Seesy, Ahmed I. & Attia, Ali M.A. & He, Zhixia & El-Batsh, Hesham M., 2020. "Combustion and emission characteristics of Jojoba biodiesel-jet A1 mixtures applying a lean premixed pre-vaporized combustion techniques: An experimental investigation," Renewable Energy, Elsevier, vol. 162(C), pages 2227-2245.
    6. Praepilas Dujjanutat & Arthit Neramittagapong & Pakawadee Kaewkannetra, 2019. "Optimization of Bio-Hydrogenated Kerosene from Refined Palm Oil by Catalytic Hydrocracking," Energies, MDPI, vol. 12(16), pages 1-15, August.
    7. Shrasti Vasistha & Anwesha Khanra & Monika Prakash Rai & Shakeel Ahmad Khan & Zengling Ma & Heli Siti Halimatul Munawaroh & Doris Ying Ying Tang & Pau Loke Show, 2023. "Exploring the Pivotal Significance of Microalgae-Derived Sustainable Lipid Production: A Critical Review of Green Bioenergy Development," Energies, MDPI, vol. 16(1), pages 1-27, January.
    8. Escalante, Edwin Santiago Rios & Ramos, Luth Silva & Rodriguez Coronado, Christian J. & de Carvalho Júnior, João Andrade, 2022. "Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    9. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    10. Song, Miaojia & Zhang, Xinghua & Chen, Yubao & Zhang, Qi & Chen, Lungang & Liu, Jianguo & Ma, Longlong, 2023. "Hydroprocessing of lipids: An effective production process for sustainable aviation fuel," Energy, Elsevier, vol. 283(C).
    11. Wang, Hongliang & Yang, Bin & Zhang, Qian & Zhu, Wanbin, 2020. "Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    12. Alherbawi, Mohammad & McKay, Gordon & Mackey, Hamish R. & Al-Ansari, Tareq, 2021. "Jatropha curcas for jet biofuel production: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    14. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    15. Zhang, Chi & Hui, Xin & Lin, Yuzhen & Sung, Chih-Jen, 2016. "Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 120-138.
    16. Yu, Xiaoli & Li, Zhi & Lu, Yiji & Huang, Rui & Roskilly, Anthony Paul, 2019. "Investigation of organic Rankine cycle integrated with double latent thermal energy storage for engine waste heat recovery," Energy, Elsevier, vol. 170(C), pages 1098-1112.
    17. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Cremonez, Paulo André & Feroldi, Michael & de Araújo, Amanda Viana & Negreiros Borges, Maykon & Weiser Meier, Thompson & Feiden, Armin & Gustavo Teleken, Joel, 2015. "Biofuels in Brazilian aviation: Current scenario and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1063-1072.
    19. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    20. Thowayeb H. Hassan & Abu Elnasr E. Sobaih & Amany E. Salem, 2021. "Factors Affecting the Rate of Fuel Consumption in Aircrafts," Sustainability, MDPI, vol. 13(14), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1277-:d:330548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.