IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i1p31-55.html
   My bibliography  Save this article

State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization

Author

Listed:
  • Gil, Antoni
  • Medrano, Marc
  • Martorell, Ingrid
  • Lázaro, Ana
  • Dolado, Pablo
  • Zalba, Belén
  • Cabeza, Luisa F.

Abstract

Concentrated solar thermal power generation is becoming a very attractive renewable energy production system among all the different renewable options, as it has have a better potential for dispatchability. This dispatchability is inevitably linked with an efficient and cost-effective thermal storage system. Thus, of all components, thermal storage is a key one. However, it is also one of the less developed. Only a few plants in the world have tested high temperature thermal energy storage systems. In this paper, the different storage concepts are reviewed and classified. All materials considered in literature or plants are listed. And finally, modellization of such systems is reviewed.

Suggested Citation

  • Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:31-55
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(09)00177-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2006. "Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations," Renewable Energy, Elsevier, vol. 31(13), pages 2025-2041.
    2. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    3. He, Bo & Martin, Viktoria & Setterwall, Fredrik, 2004. "Phase transition temperature ranges and storage density of paraffin wax phase change materials," Energy, Elsevier, vol. 29(11), pages 1785-1804.
    4. Kearney, D. & Kelly, B. & Herrmann, U. & Cable, R. & Pacheco, J. & Mahoney, R. & Price, H. & Blake, D. & Nava, P. & Potrovitza, N., 2004. "Engineering aspects of a molten salt heat transfer fluid in a trough solar field," Energy, Elsevier, vol. 29(5), pages 861-870.
    5. Fricker, H.W., 2004. "Regenerative thermal storage in atmospheric air system solar power plants," Energy, Elsevier, vol. 29(5), pages 871-881.
    6. Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lizarraga-Garcia, Enrique & Mitsos, Alexander, 2014. "Effect of heat transfer structures on thermoeconomic performance of solid thermal storage," Energy, Elsevier, vol. 68(C), pages 896-909.
    2. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
    3. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    4. Qiu, Xiaolin & Li, Wei & Song, Guolin & Chu, Xiaodong & Tang, Guoyi, 2012. "Microencapsulated n-octadecane with different methylmethacrylate-based copolymer shells as phase change materials for thermal energy storage," Energy, Elsevier, vol. 46(1), pages 188-199.
    5. Denholm, Paul & King, Jeffrey C. & Kutcher, Charles F. & Wilson, Paul P.H., 2012. "Decarbonizing the electric sector: Combining renewable and nuclear energy using thermal storage," Energy Policy, Elsevier, vol. 44(C), pages 301-311.
    6. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    7. Filali Baba, Yousra & Al Mers, Ahmed & Ajdad, Hamid, 2020. "Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization," Renewable Energy, Elsevier, vol. 153(C), pages 440-455.
    8. Al-Azawii, Mohammad M.S. & Theade, Carter & Bueno, Pablo & Anderson, Ryan, 2019. "Experimental study of layered thermal energy storage in an air-alumina packed bed using axial pipe injections," Applied Energy, Elsevier, vol. 249(C), pages 409-422.
    9. Grena, Roberto & Tarquini, Pietro, 2011. "Solar linear Fresnel collector using molten nitrates as heat transfer fluid," Energy, Elsevier, vol. 36(2), pages 1048-1056.
    10. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    11. Parida, Dipti Ranjan & Advaith, S. & Dani, Nikhil & Basu, Saptarshi, 2022. "Assessing the impact of a novel hemispherical diffuser on a single-tank sensible thermal energy storage system," Renewable Energy, Elsevier, vol. 183(C), pages 202-218.
    12. Wenqiang Sun & Zuquan Zhao & Yanhui Wang, 2017. "Thermal Analysis of a Thermal Energy Storage Unit to Enhance a Workshop Heating System Driven by Industrial Residual Water," Energies, MDPI, vol. 10(2), pages 1-19, February.
    13. Galione, P.A. & Pérez-Segarra, C.D. & Rodríguez, I. & Oliva, A. & Rigola, J., 2015. "Multi-layered solid-PCM thermocline thermal storage concept for CSP plants. Numerical analysis and perspectives," Applied Energy, Elsevier, vol. 142(C), pages 337-351.
    14. Cavallaro, Fausto & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Mardani, Abbas, 2019. "Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 258-270.
    15. Nahhas, Tamar & Py, Xavier & Sadiki, Najim, 2019. "Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 226-235.
    16. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2017. "Influence of the heat transfer fluid in a CSP plant molten salts charging process," Renewable Energy, Elsevier, vol. 113(C), pages 148-158.
    17. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    18. Nation, Deju D. & Heggs, Peter J. & Dixon-Hardy, Darron W., 2017. "Modelling and simulation of a novel Electrical Energy Storage (EES) Receiver for Solar Parabolic Trough Collector (PTC) power plants," Applied Energy, Elsevier, vol. 195(C), pages 950-973.
    19. Feng, Penghui & Liu, Yang & Ayub, Iqra & Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao, 2019. "Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 148-156.
    20. Jin, K. & Barde, A. & Nithyanandam, K. & Wirz, R.E., 2019. "Sulfur heat transfer behavior in vertically-oriented isochoric thermal energy storage systems," Applied Energy, Elsevier, vol. 240(C), pages 870-881.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:1:p:31-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.