IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp133-148.html
   My bibliography  Save this article

Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts

Author

Listed:
  • González-Roubaud, Edouard
  • Pérez-Osorio, David
  • Prieto, Cristina

Abstract

Thermal energy storage systems are key components of concentrating solar power plants in order to offer energy dispatchability to adapt the electricity power production to the curve demand. This paper presents a review of the current commercial thermal energy storage systems used in solar thermal power plants: steam accumulators and molten salts. It describes the mentioned storage concepts and the results of their economic evaluation. The economic value of the TES system is assessed by the Levelized Cost of Electricity (LCOE) calculation, an economic performance metric commonly used in power generation in order to compare cost of electricity among different power generation sources. Lots of studies have been done in the past to compare the LCOE of a complete solar thermal power plant using thermal energy storage systems. However, no specific studies related to the thermal energy storage levelized cost of electricity itself were done. The objective of this study is focused in the comparison of the TES LCOE where calculations are done for a 100MW Rankine cycle with different plant configuration and for different storage sizes ranging from 1 to 9h of equivalent full capacity operation.

Suggested Citation

  • González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:133-148
    DOI: 10.1016/j.rser.2017.05.084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117307244
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
    2. Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
    3. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2016. "Experimental analysis of charging and discharging processes, with parallel and counter flow arrangements, in a molten salts high temperature pilot plant scale setup," Applied Energy, Elsevier, vol. 178(C), pages 394-403.
    4. Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
    5. Zhao, Haoran & Wu, Qiuwei & Hu, Shuju & Xu, Honghua & Rasmussen, Claus Nygaard, 2015. "Review of energy storage system for wind power integration support," Applied Energy, Elsevier, vol. 137(C), pages 545-553.
    6. Wagner, Sharon J. & Rubin, Edward S., 2014. "Economic implications of thermal energy storage for concentrated solar thermal power," Renewable Energy, Elsevier, vol. 61(C), pages 81-95.
    7. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    8. Kearney, D. & Kelly, B. & Herrmann, U. & Cable, R. & Pacheco, J. & Mahoney, R. & Price, H. & Blake, D. & Nava, P. & Potrovitza, N., 2004. "Engineering aspects of a molten salt heat transfer fluid in a trough solar field," Energy, Elsevier, vol. 29(5), pages 861-870.
    9. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    10. Prieto, Cristina & Osuna, Rafael & Fernández, A. Inés & Cabeza, Luisa F., 2016. "Thermal storage in a MW scale. Molten salt solar thermal pilot facility: Plant description and commissioning experiences," Renewable Energy, Elsevier, vol. 99(C), pages 852-866.
    11. Guillot, Stéphanie & Faik, Abdessamad & Rakhmatullin, Aydar & Lambert, Julien & Veron, Emmanuel & Echegut, Patrick & Bessada, Catherine & Calvet, Nicolas & Py, Xavier, 2012. "Corrosion effects between molten salts and thermal storage material for concentrated solar power plants," Applied Energy, Elsevier, vol. 94(C), pages 174-181.
    12. Parrado, C. & Marzo, A. & Fuentealba, E. & Fernández, A.G., 2016. "2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 505-514.
    13. Ho, Clifford K. & Iverson, Brian D., 2014. "Review of high-temperature central receiver designs for concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 835-846.
    14. De Luca, Fabrizio & Ferraro, Vittorio & Marinelli, Valerio, 2015. "On the performance of CSP oil-cooled plants, with and without heat storage in tanks of molten salts," Energy, Elsevier, vol. 83(C), pages 230-239.
    15. Vignarooban, K. & Xu, Xinhai & Arvay, A. & Hsu, K. & Kannan, A.M., 2015. "Heat transfer fluids for concentrating solar power systems – A review," Applied Energy, Elsevier, vol. 146(C), pages 383-396.
    16. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal & Ait-Kaci, Sabrina, 2014. "A review of integrated solar combined cycle system (ISCCS) with a parabolic trough technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 223-250.
    17. Pihl, Erik & Kushnir, Duncan & Sandén, Björn & Johnsson, Filip, 2012. "Material constraints for concentrating solar thermal power," Energy, Elsevier, vol. 44(1), pages 944-954.
    18. Herrmann, Ulf & Kelly, Bruce & Price, Henry, 2004. "Two-tank molten salt storage for parabolic trough solar power plants," Energy, Elsevier, vol. 29(5), pages 883-893.
    19. Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
    20. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Tellez, Felix M., 2013. "Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends," Applied Energy, Elsevier, vol. 112(C), pages 274-288.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    2. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    3. Opolot, Michael & Zhao, Chunrong & Liu, Ming & Mancin, Simone & Bruno, Frank & Hooman, Kamel, 2022. "A review of high temperature (≥ 500 °C) latent heat thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    5. Mostafavi Tehrani, S. Saeed & Shoraka, Yashar & Nithyanandam, Karthik & Taylor, Robert A., 2019. "Shell-and-tube or packed bed thermal energy storage systems integrated with a concentrated solar power: A techno-economic comparison of sensible and latent heat systems," Applied Energy, Elsevier, vol. 238(C), pages 887-910.
    6. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    7. González-Portillo, Luis F. & Muñoz-Antón, Javier & Martínez-Val, José M., 2017. "An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants," Applied Energy, Elsevier, vol. 185(P1), pages 531-546.
    8. Nahhas, Tamar & Py, Xavier & Sadiki, Najim, 2019. "Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 226-235.
    9. Peiró, Gerard & Gasia, Jaume & Miró, Laia & Prieto, Cristina & Cabeza, Luisa F., 2017. "Influence of the heat transfer fluid in a CSP plant molten salts charging process," Renewable Energy, Elsevier, vol. 113(C), pages 148-158.
    10. Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Perez-Maqueda, L.A. & Giménez, P., 2019. "The Calcium-Looping (CaCO3/CaO) process for thermochemical energy storage in Concentrating Solar Power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    11. Gasia, Jaume & Miró, Laia & Cabeza, Luisa F., 2017. "Review on system and materials requirements for high temperature thermal energy storage. Part 1: General requirements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1320-1338.
    12. Bravo, Ruben & Ortiz, Carlos & Chacartegui, Ricardo & Friedrich, Daniel, 2021. "Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage," Applied Energy, Elsevier, vol. 282(PB).
    13. Fernández, Angel G. & Gomez-Vidal, Judith & Oró, Eduard & Kruizenga, Alan & Solé, Aran & Cabeza, Luisa F., 2019. "Mainstreaming commercial CSP systems: A technology review," Renewable Energy, Elsevier, vol. 140(C), pages 152-176.
    14. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    15. Feng, Penghui & Wu, Zhen & Zhang, Yang & Yang, Fusheng & Wang, Yuqi & Zhang, Zaoxiao, 2018. "Multi-level configuration and optimization of a thermal energy storage system using a metal hydride pair," Applied Energy, Elsevier, vol. 217(C), pages 25-36.
    16. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    17. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
    18. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    19. Lizarraga-Garcia, Enrique & Mitsos, Alexander, 2014. "Effect of heat transfer structures on thermoeconomic performance of solid thermal storage," Energy, Elsevier, vol. 68(C), pages 896-909.
    20. Elfeky, K.E. & Li, Xinyi & Ahmed, N. & Lu, Lin & Wang, Qiuwang, 2019. "Optimization of thermal performance in thermocline tank thermal energy storage system with the multilayered PCM(s) for CSP tower plants," Applied Energy, Elsevier, vol. 243(C), pages 175-190.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:133-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.