IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1367-d748885.html
   My bibliography  Save this article

Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions

Author

Listed:
  • Enkhbayar Shagdar

    (School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China
    School of Power Engineering, Mongolian University of Science and Technology (MUST), Ulaanbaatar 14191, Mongolia)

  • Bachirou Guene Lougou

    (School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China)

  • Batmunkh Sereeter

    (School of Power Engineering, Mongolian University of Science and Technology (MUST), Ulaanbaatar 14191, Mongolia)

  • Yong Shuai

    (School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China)

  • Azeem Mustafa

    (School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China)

  • Enkhjin Ganbold

    (School of Mechanical and Power Engineering, Harbin University of Science and Technology (HUST), Harbin 150001, China)

  • Dongmei Han

    (School of Energy Science and Engineering, Harbin Institute of Technology (HIT), Harbin 150001, China)

Abstract

Power generation using concentrating solar energy is a potential solution to provide clean, green, and sustainable power generation in the long term. The objective of this paper is to analyze the performance of a parabolic trough collector-based concentrating solar power (CSP) plant by selecting four different reference days (i.e., 22 March, 22 June, 22 September, and 22 December), representing four seasons in Mongolian climate conditions. Numerical simulation of the 50 MW CSP plant was performed, both at nominal and part-load conditions using the heat balance method considering variations of power load owing to the direct normal irradiation (DNI). The results revealed that the 50 MW CSP plant could operate well throughout the year, and it showed the highest value of operating performance for the 22 June due to the higher DNI and small solar incidence angle. The operating performance for the 22 March and 22 September is nearly similar. The lowest value of operating performance occurred on the 22 December. Moreover, the operating performance of the CSP plant in the part-load conditions was significantly reduced compared to the nominal load owing to the DNI fluctuation. This study also revealed that the CSP plant could significantly contribute to environmental protection and climate change mitigation.

Suggested Citation

  • Enkhbayar Shagdar & Bachirou Guene Lougou & Batmunkh Sereeter & Yong Shuai & Azeem Mustafa & Enkhjin Ganbold & Dongmei Han, 2022. "Performance Analysis of the 50 MW Concentrating Solar Power Plant under Various Operation Conditions," Energies, MDPI, vol. 15(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1367-:d:748885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomasz Janusz Teleszewski & Mirosław Żukowski & Dorota Anna Krawczyk & Antonio Rodero, 2021. "Analysis of the Applicability of the Parabolic Trough Solar Thermal Power Plants in the Locations with a Temperate Climate," Energies, MDPI, vol. 14(11), pages 1-19, May.
    2. Sultan, Ali J. & Hughes, Kevin J. & Ingham, Derek B. & Ma, Lin & Pourkashanian, Mohamed, 2020. "Techno-economic competitiveness of 50 MW concentrating solar power plants for electricity generation under Kuwait climatic conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    4. Jorge M. Llamas & David Bullejos & Manuel Ruiz de Adana, 2017. "Techno-Economic Assessment of Heat Transfer Fluid Buffering for Thermal Energy Storage in the Solar Field of Parabolic Trough Solar Thermal Power Plants," Energies, MDPI, vol. 10(8), pages 1-17, August.
    5. Aqachmar, Zineb & Allouhi, Amine & Jamil, Abdelmajid & Gagouch, Belgacem & Kousksou, Tarik, 2019. "Parabolic trough solar thermal power plant Noor I in Morocco," Energy, Elsevier, vol. 178(C), pages 572-584.
    6. Yabibal Getahun Dessie & Bachirou Guene Lougou & Qi Hong & Tan Heping & Zhang Juqi & Gao Baohai & Islam Md Arafat, 2020. "Thermal Performance Analysis of a Solar Reactor Designed for Syngas Production," Energies, MDPI, vol. 13(13), pages 1-20, July.
    7. Praveen R. P. & Mohammad Abdul Baseer & Ahmed Bilal Awan & Muhammad Zubair, 2018. "Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region," Energies, MDPI, vol. 11(4), pages 1-18, March.
    8. Chen, Heng & Xue, Kai & Wu, Yunyun & Xu, Gang & Jin, Xin & Liu, Wenyi, 2021. "Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system," Energy, Elsevier, vol. 214(C).
    9. Shagdar, Enkhbayar & Lougou, Bachirou Guene & Shuai, Yong & Anees, Junaid & Damdinsuren, Chimedsuren & Tan, Heping, 2020. "Performance analysis and techno-economic evaluation of 300 MW solar-assisted power generation system in the whole operation conditions," Applied Energy, Elsevier, vol. 264(C).
    10. Reddy, V. Siva & Kaushik, S.C. & Tyagi, S.K., 2012. "Exergetic analysis and performance evaluation of parabolic trough concentrating solar thermal power plant (PTCSTPP)," Energy, Elsevier, vol. 39(1), pages 258-273.
    11. Salazar, Germán A. & Fraidenraich, Naum & de Oliveira, Carlos Antonio Alves & de Castro Vilela, Olga & Hongn, Marcos & Gordon, Jeffrey M., 2017. "Analytic modeling of parabolic trough solar thermal power plants," Energy, Elsevier, vol. 138(C), pages 1148-1156.
    12. Fuqiang, Wang & Ziming, Cheng & Jianyu, Tan & Yuan, Yuan & Yong, Shuai & Linhua, Liu, 2017. "Progress in concentrated solar power technology with parabolic trough collector system: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1314-1328.
    13. Mahmood Shafiee & Adel Alghamdi & Chris Sansom & Phil Hart & Adriana Encinas-Oropesa, 2020. "A Through-Life Cost Analysis Model to Support Investment Decision-Making in Concentrated Solar Power Projects," Energies, MDPI, vol. 13(7), pages 1-20, March.
    14. Georgios E. Arnaoutakis & Dimitris Al. Katsaprakakis, 2021. "Concentrating Solar Power Advances in Geometric Optics, Materials and System Integration," Energies, MDPI, vol. 14(19), pages 1-25, September.
    15. Muhammad Khurram Khan, 2020. "Technological advancements and 2020," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 73(1), pages 1-2, January.
    16. Paul Caicedo & David Wood & Craig Johansen, 2021. "Radial Turbine Design for Solar Chimney Power Plants," Energies, MDPI, vol. 14(3), pages 1-18, January.
    17. Boukelia, T.E. & Arslan, O. & Mecibah, M.S., 2017. "Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach," Renewable Energy, Elsevier, vol. 105(C), pages 324-333.
    18. Li, Chao & Yang, Zhiping & Zhai, Rongrong & Yang, Yongping & Patchigolla, Kumar & Oakey, John E., 2018. "Off-design thermodynamic performances of a solar tower aided coal-fired power plant for different solar multiples with thermal energy storage," Energy, Elsevier, vol. 163(C), pages 956-968.
    19. Yuanjing, Wang & Cheng, Zhang & Yanping, Zhang & Xiaohong, Huang, 2020. "Performance analysis of an improved 30 MW parabolic trough solar thermal power plant," Energy, Elsevier, vol. 213(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge M. Llamas & David Bullejos & Manuel Ruiz de Adana, 2019. "Optimization of 100 MW e Parabolic-Trough Solar-Thermal Power Plants Under Regulated and Deregulated Electricity Market Conditions," Energies, MDPI, vol. 12(20), pages 1-23, October.
    2. Hanane Ait Lahoussine Ouali & Ahmed Alami Merrouni & Shahariar Chowdhury & Kuaanan Techato & Sittiporn Channumsin & Nasim Ullah, 2022. "Optimization and Techno-Economic Appraisal of Parabolic Trough Solar Power Plant under Different Scenarios: A Case Study of Morocco," Energies, MDPI, vol. 15(22), pages 1-20, November.
    3. Yue Liu & Lixin Tian & Zhuyun Xie & Zaili Zhen & Huaping Sun, 2021. "Option to survive or surrender: carbon asset management and optimization in thermal power enterprises from China," Papers 2104.04729, arXiv.org.
    4. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    5. Kamath, Harsh G. & Majumdar, Rudrodip & Krishnan, A.V. & Srikanth, R., 2022. "Cost and environmental benefits of coal-concentrated solar power (CSP) hybridization in India," Energy, Elsevier, vol. 240(C).
    6. Yang, Honglun & Wang, Qiliang & Huang, Yihang & Feng, Junsheng & Ao, Xianze & Hu, Maobin & Pei, Gang, 2019. "Spectral optimization of solar selective absorbing coating for parabolic trough receiver," Energy, Elsevier, vol. 183(C), pages 639-650.
    7. Tomasz Janusz Teleszewski & Mirosław Żukowski & Dorota Anna Krawczyk & Antonio Rodero, 2021. "Analysis of the Applicability of the Parabolic Trough Solar Thermal Power Plants in the Locations with a Temperate Climate," Energies, MDPI, vol. 14(11), pages 1-19, May.
    8. Stanek, Bartosz & Grzywnowicz, Krzysztof & Bartela, Łukasz & Węcel, Daniel & Uchman, Wojciech, 2021. "A system analysis of hybrid solar PTC-CPV absorber operation," Renewable Energy, Elsevier, vol. 174(C), pages 635-653.
    9. Gharat, Punit V. & Bhalekar, Snehal S. & Dalvi, Vishwanath H. & Panse, Sudhir V. & Deshmukh, Suresh P. & Joshi, Jyeshtharaj B., 2021. "Chronological development of innovations in reflector systems of parabolic trough solar collector (PTC) - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Praveen R. P. & Mohammad Abdul Baseer & Ahmed Bilal Awan & Muhammad Zubair, 2018. "Performance Analysis and Optimization of a Parabolic Trough Solar Power Plant in the Middle East Region," Energies, MDPI, vol. 11(4), pages 1-18, March.
    11. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    12. Wang, Anming & Liu, Jiping & Zhang, Shunqi & Liu, Ming & Yan, Junjie, 2020. "Steam generation system operation optimization in parabolic trough concentrating solar power plants under cloudy conditions," Applied Energy, Elsevier, vol. 265(C).
    13. Mahmoudimehr, Javad & Sebghati, Parvin, 2019. "A novel multi-objective Dynamic Programming optimization method: Performance management of a solar thermal power plant as a case study," Energy, Elsevier, vol. 168(C), pages 796-814.
    14. Ignacio Arias & Eduardo Zarza & Loreto Valenzuela & Manuel Pérez-García & José Alfonso Romero Ramos & Rodrigo Escobar, 2021. "Modeling and Hourly Time-Scale Characterization of the Main Energy Parameters of Parabolic-Trough Solar Thermal Power Plants Using a Simplified Quasi-Dynamic Model," Energies, MDPI, vol. 14(1), pages 1-27, January.
    15. Andrea Gilioli & Luca Abbiati & Massimo Fossati & Francesco Cadini & Andrea Manes & Marco Giglio & Lino Carnelli & Claudio Boris Volpato & Stefano Cardamone, 2019. "Experimental Investigation on the Mechanical Behavior of an Innovative Parabolic Trough Collector," Energies, MDPI, vol. 12(23), pages 1-19, November.
    16. Shagdar, Enkhbayar & Shuai, Yong & Lougou, Bachirou Guene & Mustafa, Azeem & Choidorj, Dashpuntsag & Tan, Heping, 2022. "New integration mechanism of solar energy into 300 MW coal-fired power plant: Performance and techno-economic analysis," Energy, Elsevier, vol. 238(PC).
    17. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    18. Salvatore Esposito & Antonio D’Angelo & Claudia Diletto & Antonio Guglielmo & Michela Lanchi & Gabriella Rossi, 2021. "Solar Coatings Based on Ag Infrared Reflector with High Stability at Medium and High Temperature," Energies, MDPI, vol. 14(18), pages 1-18, September.
    19. Sultan, Ali J. & Ingham, Derek B. & Hughes, Kevin J. & Ma, Lin & Pourkashanian, Mohamed, 2021. "Optimization and performance enhancement of concentrating solar power in a hot and arid desert environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Arnaoutakis, Georgios E. & Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2022. "Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance," Applied Energy, Elsevier, vol. 323(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1367-:d:748885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.