On-Line EIS Measurement for High-Power Fuel Cell Systems Using Simulink Real-Time
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Baricci, Andrea & Mereu, Riccardo & Messaggi, Mirko & Zago, Matteo & Inzoli, Fabio & Casalegno, Andrea, 2017. "Application of computational fluid dynamics to the analysis of geometrical features in PEM fuel cells flow fields with the aid of impedance spectroscopy," Applied Energy, Elsevier, vol. 205(C), pages 670-682.
- Samuel Simon Araya & Fan Zhou & Simon Lennart Sahlin & Sobi Thomas & Christian Jeppesen & Søren Knudsen Kær, 2019. "Fault Characterization of a Proton Exchange Membrane Fuel Cell Stack," Energies, MDPI, vol. 12(1), pages 1-17, January.
- Ren, Peng & Pei, Pucheng & Li, Yuehua & Wu, Ziyao & Chen, Dongfang & Huang, Shangwei & Jia, Xiaoning, 2019. "Diagnosis of water failures in proton exchange membrane fuel cell with zero-phase ohmic resistance and fixed-low-frequency impedance," Applied Energy, Elsevier, vol. 239(C), pages 785-792.
- Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
- Kim, Jonghoon & Lee, Inhae & Tak, Yongsug & Cho, B.H., 2013. "Impedance-based diagnosis of polymer electrolyte membrane fuel cell failures associated with a low frequency ripple current," Renewable Energy, Elsevier, vol. 51(C), pages 302-309.
- Oh, Hwanyeong & Lee, Won-Yong & Won, Jinyeon & Kim, Minjin & Choi, Yoon-Young & Han, Soo-Bin, 2020. "Residual-based fault diagnosis for thermal management systems of proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 277(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Rong & He, Yongling & Xie, Wenlong & Guo, Bin & Yang, Shichun, 2023. "Comparative analysis for commercial li-ion batteries degradation using the distribution of relaxation time method based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 263(PD).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhao, Lei & Hong, Jichao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Ming, Pingwen & Dai, Haifeng, 2023. "Investigation of local sensitivity for vehicle-oriented fuel cell stacks based on electrochemical impedance spectroscopy," Energy, Elsevier, vol. 262(PA).
- Wang, Hanqing & Gaillard, Arnaud & Hissel, Daniel, 2019. "A review of DC/DC converter-based electrochemical impedance spectroscopy for fuel cell electric vehicles," Renewable Energy, Elsevier, vol. 141(C), pages 124-138.
- Zhang, Xiaojie & Zhang, Tong & Chen, Huicui & Cao, Yinliang, 2021. "A review of online electrochemical diagnostic methods of on-board proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 286(C).
- Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
- Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Wu, Ziyao & Chen, Dongfang & Huang, Hao, 2019. "Characteristic analysis in lowering current density based on pressure drop for avoiding flooding in proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 248(C), pages 321-329.
- Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
- Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
- Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
- Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
- Ren, Peng & Pei, Pucheng & Chen, Dongfang & Li, Yuehua & Wu, Ziyao & Zhang, Lu & Li, Zizhao & Wang, Mingkai & Wang, He & Wang, Bozheng & Wang, Xizhong, 2022. "Novel analytic method of membrane electrode assembly parameters for fuel cell consistency evaluation by micro-current excitation," Applied Energy, Elsevier, vol. 306(PB).
- Zhao, Lei & Yuan, Hao & Xie, Jiaping & Jiang, Shangfeng & Wei, Xuezhe & Tang, Wei & Ming, Pingwen & Dai, Haifeng, 2023. "Inconsistency evaluation of vehicle-oriented fuel cell stacks based on electrochemical impedance under dynamic operating conditions," Energy, Elsevier, vol. 265(C).
- Taghiabadi, Mohammad Mohammadi & Zhiani, Mohammad & Silva, Valter, 2019. "Effect of MEA activation method on the long-term performance of PEM fuel cell," Applied Energy, Elsevier, vol. 242(C), pages 602-611.
- Xiao, Liusheng & Bian, Miaoqi & Sun, Yushuai & Yuan, Jinliang & Wen, Xiaofei, 2024. "Transport properties evaluation of pore-scale GDLs for PEMFC using orthogonal design method," Applied Energy, Elsevier, vol. 357(C).
- Rostami, Leila & Haghshenasfard, Masoud & Sadeghi, Morteza & Zhiani, Mohammad, 2022. "A 3D CFD model of novel flow channel designs based on the serpentine and the parallel design for performance enhancement of PEMFC," Energy, Elsevier, vol. 258(C).
- Su, Guoqing & Yang, Daijun & Xiao, Qiangfeng & Dai, Haiqin & Zhang, Cunman, 2021. "Effects of vortexes in feed header on air flow distribution of PEMFC stack: CFD simulation and optimization for better uniformity," Renewable Energy, Elsevier, vol. 173(C), pages 498-506.
- Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Antonio Sorrentino & Kai Sundmacher & Tanja Vidakovic-Koch, 2020. "Polymer Electrolyte Fuel Cell Degradation Mechanisms and Their Diagnosis by Frequency Response Analysis Methods: A Review," Energies, MDPI, vol. 13(21), pages 1-28, November.
- Akimoto, Yutaro & Shibata, Masumi & Tsuzuki, Yuto & Okajima, Keiichi & Suzuki, Shin-nosuke, 2023. "In-situ on-board evaluation and control of proton exchange membrane fuel cells using magnetic sensors," Applied Energy, Elsevier, vol. 351(C).
- Won, Jinyeon & Oh, Hwanyeong & Hong, Jongsup & Kim, Minjin & Lee, Won-Yong & Choi, Yoon-Young & Han, Soo-Bin, 2021. "Hybrid diagnosis method for initial faults of air supply systems in proton exchange membrane fuel cells," Renewable Energy, Elsevier, vol. 180(C), pages 343-352.
- Kim, Wook & Duong, Van-Huan & Nguyen, Thanh-Tuan & Choi, Woojin, 2013. "Analysis of the effects of inverter ripple current on a photovoltaic power system by using an AC impedance model of the solar cell," Renewable Energy, Elsevier, vol. 59(C), pages 150-157.
More about this item
Keywords
fuel cell systems; high power application; on-line EIS; impedance measurement; real-time target; Simulink Real-Time; Nyquist plot; Speedgoat;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6133-:d:643662. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.