IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v357y2024ics0306261923018093.html
   My bibliography  Save this article

Transport properties evaluation of pore-scale GDLs for PEMFC using orthogonal design method

Author

Listed:
  • Xiao, Liusheng
  • Bian, Miaoqi
  • Sun, Yushuai
  • Yuan, Jinliang
  • Wen, Xiaofei

Abstract

Gas diffusion layer (GDL) is an essential component of proton exchange membrane fuel cells, serving the functions of gas-water transport, thermal-electrical conduction and mechanical support. The various microstructural characteristics of the GDL have coupled and complex impact on transport properties, which is not comprehensively considered in previous studies. This study combines stochastically reconstruction techniques, pore-scale modeling and orthogonal design method to evaluate the coupling effect of multiple microstructural characteristics on transport properties, and determine the impact degree of each microstructural characteristics, including fiber diameter, porosity, GDL thickness, fiber orientation coefficient, binder and PTFE content. Finally, new mathematical models are developed and validated to predict and optimize the anisotropic transport properties accurately and rapidly by considering the coupling effect of multiple microstructural characteristics. The results showed that porosity has higher impact degree on gas diffusion and heat conduction than other microstructural characteristics. The combinations of microstructural parameters are optimized to achieve higher performance, with thermal conductivity and gas diffusivity increased by ≥139% and 62%, respectively. The prediction mathematical models are validated with the error ranging from 1% to 8%, which can predict transport properties and optimize the GDL microstructure accurately and rapidly.

Suggested Citation

  • Xiao, Liusheng & Bian, Miaoqi & Sun, Yushuai & Yuan, Jinliang & Wen, Xiaofei, 2024. "Transport properties evaluation of pore-scale GDLs for PEMFC using orthogonal design method," Applied Energy, Elsevier, vol. 357(C).
  • Handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018093
    DOI: 10.1016/j.apenergy.2023.122445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923018093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Rui & Diao, Xiaoyu & Ma, Tiancai & Tang, Shenghao & Chen, Liang & Liu, Dengcheng, 2019. "Optimized microporous layer for improving polymer exchange membrane fuel cell performance using orthogonal test design," Applied Energy, Elsevier, vol. 254(C).
    2. Zhang, Qian & Lin, Rui & Técher, Ludovic & Cui, Xin, 2016. "Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution," Energy, Elsevier, vol. 115(P1), pages 550-560.
    3. Yuan Gao & Teng Jin & Xiaoyan Wu & Tong Zhang, 2019. "The Effect of Fiber Orientation on Stochastic Reconstruction and Permeability of a Carbon Paper Gas Diffusion Layer," Energies, MDPI, vol. 12(14), pages 1-13, July.
    4. Ashrafi, Moosa & Shams, Mehrzad, 2017. "The effects of flow-field orientation on water management in PEM fuel cells with serpentine channels," Applied Energy, Elsevier, vol. 208(C), pages 1083-1096.
    5. Ikechukwu S. Anyanwu & Zhiqiang Niu & Daokuan Jiao & Aezid-Ul-Hassan Najmi & Zhi Liu & Kui Jiao, 2020. "Liquid Water Transport Behavior at GDL-Channel Interface of a Wave-Like Channel," Energies, MDPI, vol. 13(11), pages 1-20, May.
    6. Kurnia, Jundika C. & Sasmito, Agus P. & Shamim, Tariq, 2017. "Performance evaluation of a PEM fuel cell stack with variable inlet flows under simulated driving cycle conditions," Applied Energy, Elsevier, vol. 206(C), pages 751-764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Margherita Bulgarini & Augusto Della Torre & Andrea Baricci & Amedeo Grimaldi & Luca Marocco & Riccardo Mereu & Gianluca Montenegro & Angelo Onorati, 2024. "Computational Fluid Dynamic Investigation of Local Flow-Field Conditions in Lab Polymer Electrolyte Membrane Fuel Cells to Identify Degradation Stressors and Performance Enhancers," Energies, MDPI, vol. 17(15), pages 1-27, July.
    2. Xuan Meng & Jian Mei & Xingwang Tang & Jinhai Jiang & Chuanyu Sun & Kai Song, 2024. "The Degradation Prediction of Proton Exchange Membrane Fuel Cell Performance Based on a Transformer Model," Energies, MDPI, vol. 17(12), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, Di & Lin, Rui & Jiang, Zhenghua & Zhu, Yike & Liu, Dengchen & Cai, Xin & Chen, Liang, 2020. "Low temperature durability and consistency analysis of proton exchange membrane fuel cell stack based on comprehensive characterizations," Applied Energy, Elsevier, vol. 264(C).
    2. Lin, Rui & Zhong, Di & Lan, Shunbo & Guo, Rong & Ma, Yunyang & Cai, Xin, 2021. "Experimental validation for enhancement of PEMFC cold start performance: Based on the optimization of micro porous layer," Applied Energy, Elsevier, vol. 300(C).
    3. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    4. Tang, Wei & Chang, Guofeng & Xie, Jiaping & Wang, Chao & Shen, Jun & Pan, Xiangmin & Du, Daochang & Liu, Zhaoming & Yuan, Hao & Wei, Xuezhe & Dai, Haifeng, 2024. "A new insight into the in-plane heterogeneity of commercial-sized fuel cells via a novel probability distribution-based method," Applied Energy, Elsevier, vol. 368(C).
    5. Yu, Rui Jiao & Guo, Hang & Ye, Fang & Chen, Hao, 2022. "Multi-parameter optimization of stepwise distribution of parameters of gas diffusion layer and catalyst layer for PEMFC peak power density," Applied Energy, Elsevier, vol. 324(C).
    6. Liu, Huize & Hu, Zunyan & Li, Jianqiu & Xu, Liangfei & Shao, Yangbin & Ouyang, Minggao, 2023. "Investigation on the optimal GDL thickness design for PEMFCs considering channel/rib geometry matching and operating conditions," Energy, Elsevier, vol. 282(C).
    7. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    8. Lin, Chen & Yan, Xiaohui & Wei, Guanghua & Ke, Changchun & Shen, Shuiyun & Zhang, Junliang, 2019. "Optimization of configurations and cathode operating parameters on liquid-cooled proton exchange membrane fuel cell stacks by orthogonal method," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Zhang, Lu & Liu, Jie & Du, Shaojie & Zhao, Chen, 2024. "Multiphase flow dynamics in metal foam proton exchange membrane fuel cell," Renewable Energy, Elsevier, vol. 226(C).
    10. Akimoto, Yutaro & Shibata, Masumi & Tsuzuki, Yuto & Okajima, Keiichi & Suzuki, Shin-nosuke, 2023. "In-situ on-board evaluation and control of proton exchange membrane fuel cells using magnetic sensors," Applied Energy, Elsevier, vol. 351(C).
    11. Ángel Encalada-Dávila & Samir Echeverría & Jordy Santana-Villamar & Gabriel Cedeño & Mayken Espinoza-Andaluz, 2021. "Optimization Algorithms: Optimal Parameters Computation for Modeling the Polarization Curves of a PEFC Considering the Effect of the Relative Humidity," Energies, MDPI, vol. 14(18), pages 1-21, September.
    12. Zhou, Yu & Meng, Kai & Liu, Wei & Chen, Ke & Chen, Wenshang & Zhang, Ning & Chen, Ben, 2024. "Multi-objective optimization of comprehensive performance enhancement for proton exchange membrane fuel cell based on machine learning," Renewable Energy, Elsevier, vol. 232(C).
    13. Indro Biswas & Daniel G. Sánchez & Mathias Schulze & Jens Mitzel & Benjamin Kimmel & Aldo Saul Gago & Pawel Gazdzicki & K. Andreas Friedrich, 2020. "Advancement of Segmented Cell Technology in Low Temperature Hydrogen Technologies," Energies, MDPI, vol. 13(9), pages 1-22, May.
    14. Li, Yuehua & Pei, Pucheng & Wu, Ziyao & Ren, Peng & Jia, Xiaoning & Chen, Dongfang & Huang, Shangwei, 2018. "Approaches to avoid flooding in association with pressure drop in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 224(C), pages 42-51.
    15. Kim, Jaeyeon & Kim, Hyeok & Song, Hyeonjun & Kim, Dasol & Kim, Geon Hwi & Im, Dasom & Jeong, Youngjin & Park, Taehyun, 2021. "Carbon nanotube sheet as a microporous layer for proton exchange membrane fuel cells," Energy, Elsevier, vol. 227(C).
    16. Meng, Huanru & Yu, Xianxian & Luo, Xiaobing & Tu, Zhengkai, 2024. "Modelling and operation characteristics of air-cooled PEMFC with metallic bipolar plate used in unmanned aerial vehicle," Energy, Elsevier, vol. 300(C).
    17. Tolj, Ivan & Penga, Željko & Vukičević, Damir & Barbir, Frano, 2020. "Thermal management of edge-cooled 1 kW portable proton exchange membrane fuel cell stack," Applied Energy, Elsevier, vol. 257(C).
    18. Cheng, Ming & Luo, Liuxuan & Feng, Yong & Feng, Qilong & Yan, Xiaohui & Shen, Shuiyun & Guo, Yangge & Zhang, Junliang, 2024. "Numerical studies on porous water transport plates applied in PEMFCs under pure oxygen condition," Applied Energy, Elsevier, vol. 362(C).
    19. Liu, Jiaran & Tan, Jinzhu & Yang, Weizhan & Li, Yang & Wang, Chao, 2021. "Better electrochemical performance of PEMFC under a novel pneumatic clamping mechanism," Energy, Elsevier, vol. 229(C).
    20. Sarjuni, C.A. & Lim, B.H. & Majlan, E.H. & Rosli, M.I., 2024. "A review: Fluid dynamic and mass transport behaviour in a proton exchange membrane fuel cell stack," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:357:y:2024:i:c:s0306261923018093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.