IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6064-d641411.html
   My bibliography  Save this article

Transesterification of Pyrolysed Castor Seed Oil in the Presence of CaCu(OCH 3 ) 2 Catalyst

Author

Listed:
  • Vikas Sharma

    (Mechanical, Biomedical and Design Engineering, College of Engineering & Physical Sciences, Aston University, Birmingham B4 7ET, UK)

  • Abul Kalam Hossain

    (Mechanical, Biomedical and Design Engineering, College of Engineering & Physical Sciences, Aston University, Birmingham B4 7ET, UK)

  • Ganesh Duraisamy

    (Internal Combustion Engine Division, Department of Mechanical Engineering, College of Engineering, Anna University, Chennai 600025, India)

  • Murugan Vijay

    (Internal Combustion Engine Division, Department of Mechanical Engineering, College of Engineering, Anna University, Chennai 600025, India)

Abstract

Energy consumption is on the rise due to rapid technological progress and a higher standard of living. The use of alternative energy resources is essential to meet the rising energy demand and mitigate the carbon emissions caused due to use of fossil-based fuels. Biodiesel produced from non-edible oils such as castor seed oil (CO) can be used in diesel engines to replace fossil diesel. However, the quality and yields for CO biodiesel is low due to the presence of ricinolic acid C18:1OH (79%). In this study, two-stage conversion techniques were used to improve the yields and properties of CO biodiesel. The catalyst CaCu(OCH 3 ) 2 was prepared from waste eggshell and synthesized with copper oxide in the presence of methanol. The castor oil was subjected to pyrolysis at 450–500 °C and then transesterified in the presence of modified catalyst. The reaction parameters such as methanol-to-oil ratio and catalyst and reaction time were investigated, and the optimum combination was used to produce castor biodiesel from pyrolysis castor oil. Results showed that the cetane number and oxidation stability were increased by 7% and 42% respectively. The viscosity, density, flash point, and iodine value were decreased by 52%, 3%, 5% and 6%, respectively. The calorific values remained the same. This study suggests that pyrolyzed castor seed oil followed by transesterification in the presence of a modified catalyst gave better fuel properties and yields than the conventional transesterification process for biodiesel fuel production.

Suggested Citation

  • Vikas Sharma & Abul Kalam Hossain & Ganesh Duraisamy & Murugan Vijay, 2021. "Transesterification of Pyrolysed Castor Seed Oil in the Presence of CaCu(OCH 3 ) 2 Catalyst," Energies, MDPI, vol. 14(19), pages 1-14, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6064-:d:641411
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelfattah, Mohammed Saleh Hamed & Abu-Elyazeed, Osayed Sayed Mohamed & Abd El mawla, Ebtsam & Abdelazeem, Marwa Ahmed, 2018. "On biodiesels from castor raw oil using catalytic pyrolysis," Energy, Elsevier, vol. 143(C), pages 950-960.
    2. Chen, Guan-Bang & Li, Yueh-Heng & Chen, Guan-Lin & Wu, Wen-Teng, 2017. "Effects of catalysts on pyrolysis of castor meal," Energy, Elsevier, vol. 119(C), pages 1-9.
    3. Aboelazayem, Omar & El-Gendy, Nour Sh. & Abdel-Rehim, Ahmed A. & Ashour, Fatma & Sadek, Mohamed A., 2018. "Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis," Energy, Elsevier, vol. 157(C), pages 843-852.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain, Abul Kalam & Sharma, Vikas & Serrano, Clara & Krishnasamy, Anand & Ganesh, Duraisamy, 2024. "Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine," Renewable Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2019. "Derivatisation-free characterisation and supercritical conversion of free fatty acids into biodiesel from high acid value waste cooking oil," Renewable Energy, Elsevier, vol. 143(C), pages 77-90.
    2. Bisi Olaniyan & Basudeb Saha, 2020. "Multiobjective Optimization for the Greener Synthesis of Chloromethyl Ethylene Carbonate by CO 2 and Epichlorohydrin via Response Surface Methodology," Energies, MDPI, vol. 13(3), pages 1-27, February.
    3. Aboelazayem, Omar & Gadalla, Mamdouh & Alhajri, Ibrahim & Saha, Basudeb, 2021. "Advanced process integration for supercritical production of biodiesel: Residual waste heat recovery via organic Rankine cycle (ORC)," Renewable Energy, Elsevier, vol. 164(C), pages 433-443.
    4. Ly, Hoang Vu & Lim, Dong-Hyeon & Sim, Jae Wook & Kim, Seung-Soo & Kim, Jinsoo, 2018. "Catalytic pyrolysis of tulip tree (Liriodendron) in bubbling fluidized-bed reactor for upgrading bio-oil using dolomite catalyst," Energy, Elsevier, vol. 162(C), pages 564-575.
    5. Vellaiyan, Suresh, 2020. "Combustion, performance and emission evaluation of a diesel engine fueled with soybean biodiesel and its water blends," Energy, Elsevier, vol. 201(C).
    6. Xu, Lujiang & Chen, Shijia & Song, He & Liu, Yang & Shi, Chenchen & Lu, Qiang, 2020. "Comprehensively utilization of spent bleaching clay for producing high quality bio-fuel via fast pyrolysis process," Energy, Elsevier, vol. 190(C).
    7. Edmundas Kazimieras Zavadskas & Audrius Čereška & Jonas Matijošius & Alfredas Rimkus & Romualdas Bausys, 2019. "Internal Combustion Engine Analysis of Energy Ecological Parameters by Neutrosophic MULTIMOORA and SWARA Methods," Energies, MDPI, vol. 12(8), pages 1-26, April.
    8. Carlos S. Osorio-González & Natali Gómez-Falcon & Fabiola Sandoval-Salas & Rahul Saini & Satinder K. Brar & Antonio Avalos Ramírez, 2020. "Production of Biodiesel from Castor Oil: A Review," Energies, MDPI, vol. 13(10), pages 1-22, May.
    9. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Valorisation of high acid value waste cooking oil into biodiesel using supercritical methanolysis: Experimental assessment and statistical optimisation on typical Egyptian feedstock," Energy, Elsevier, vol. 162(C), pages 408-420.
    10. Thangarasu, Vinoth & Balaji, B. & Ramanathan, Anand, 2019. "Experimental investigation of tribo-corrosion and engine characteristics of Aegle Marmelos Correa biodiesel and its diesel blends on direct injection diesel engine," Energy, Elsevier, vol. 171(C), pages 879-892.
    11. Omar Aboelazayem & Mamdouh Gadalla & Basudeb Saha, 2022. "Comprehensive Optimisation of Biodiesel Production Conditions via Supercritical Methanolysis of Waste Cooking Oil," Energies, MDPI, vol. 15(10), pages 1-22, May.
    12. Zhang, Qiaofei & Han, Qi & Bai, Hongjuan & Li, Yakun & Zhu, Chunshan & Xie, Wenlei, 2024. "Monolithic HZSM-5/SS-fiber catalysts with high coke-resistance and selectivity for catalytic cracking of castor oil to produce biofuel," Renewable Energy, Elsevier, vol. 229(C).
    13. Saad Ahmad & Ali Turab Jafry & Muteeb ul Haq & Naseem Abbas & Huma Ajab & Arif Hussain & Uzair Sajjad, 2023. "Performance and Emission Characteristics of Second-Generation Biodiesel with Oxygenated Additives," Energies, MDPI, vol. 16(13), pages 1-33, July.
    14. Chintala, Venkateswarlu, 2018. "Production, upgradation and utilization of solar assisted pyrolysis fuels from biomass – A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 120-130.
    15. Gad, M.S. & Abu-Elyazeed, O.S. & Mohamed, M.A. & Hashim, A.M., 2021. "Effect of oil blends derived from catalytic pyrolysis of waste cooking oil on diesel engine performance, emissions and combustion characteristics," Energy, Elsevier, vol. 223(C).
    16. Mohamed Mohamed & Chee-Keong Tan & Ali Fouda & Mohammed Saber Gad & Osayed Abu-Elyazeed & Abdel-Fatah Hashem, 2020. "Diesel Engine Performance, Emissions and Combustion Characteristics of Biodiesel and Its Blends Derived from Catalytic Pyrolysis of Waste Cooking Oil," Energies, MDPI, vol. 13(21), pages 1-13, October.
    17. Aboelazayem, Omar & Gadalla, Mamdouh & Saha, Basudeb, 2018. "Design and simulation of an integrated process for biodiesel production from waste cooking oil using supercritical methanolysis," Energy, Elsevier, vol. 161(C), pages 299-307.
    18. Chen, Wei-Hsin & Farooq, Wasif & Shahbaz, Muhammad & Naqvi, Salman Raza & Ali, Imtiaz & Al-Ansari, Tareq & Saidina Amin, Nor Aishah, 2021. "Current status of biohydrogen production from lignocellulosic biomass, technical challenges and commercial potential through pyrolysis process," Energy, Elsevier, vol. 226(C).
    19. Mohadesi, Majid & Aghel, Babak & Maleki, Mahmoud & Ansari, Ahmadreza, 2019. "Production of biodiesel from waste cooking oil using a homogeneous catalyst: Study of semi-industrial pilot of microreactor," Renewable Energy, Elsevier, vol. 136(C), pages 677-682.
    20. Kan, Xiang & Wei, Liping & Li, Xian & Li, Han & Zhou, Dezhi & Yang, Wenming & Wang, Chi-Hwa, 2020. "Effects of the three dual-fuel strategies on performance and emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6064-:d:641411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.