IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2124-d533790.html
   My bibliography  Save this article

Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario

Author

Listed:
  • Giuseppe Anastasi

    (Department of Information Engineering (DII), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Carlo Bartoli

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Paolo Conti

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Emanuele Crisostomi

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Alessandro Franco

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Sergio Saponara

    (Department of Information Engineering (DII), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Daniele Testi

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Dimitri Thomopulos

    (Department of Energy, Systems, Territory, and Constructions Engineering (DESTEC), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

  • Carlo Vallati

    (Department of Information Engineering (DII), University of Pisa, Largo Lucio Lazzarino, 56122 Pisa, Italy)

Abstract

Worldwide increasing awareness of energy sustainability issues has been the main driver in developing the concepts of (Nearly) Zero Energy Buildings, where the reduced energy consumptions are (nearly) fully covered by power locally generated by renewable sources. At the same time, recent advances in Internet of Things technologies are among the main enablers of Smart Homes and Buildings. The transition of conventional buildings into active environments that process, elaborate and react to online measured environmental quantities is being accelerated by the aspects related to COVID-19, most notably in terms of air exchange and the monitoring of the density of occupants. In this paper, we address the problem of maximizing the energy efficiency and comfort perceived by occupants, defined in terms of thermal comfort, visual comfort and air quality. The case study of the University of Pisa is considered as a practical example to show preliminary results of the aggregation of environmental data.

Suggested Citation

  • Giuseppe Anastasi & Carlo Bartoli & Paolo Conti & Emanuele Crisostomi & Alessandro Franco & Sergio Saponara & Daniele Testi & Dimitri Thomopulos & Carlo Vallati, 2021. "Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario," Energies, MDPI, vol. 14(8), pages 1-17, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2124-:d:533790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2124/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Djongyang, Noël & Tchinda, René & Njomo, Donatien, 2010. "Thermal comfort: A review paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2626-2640, December.
    2. Wolf, Sebastian & Calı̀, Davide & Krogstie, John & Madsen, Henrik, 2019. "Carbon dioxide-based occupancy estimation using stochastic differential equations," Applied Energy, Elsevier, vol. 236(C), pages 32-41.
    3. Li, Wenzhuo & Wang, Shengwei, 2020. "A multi-agent based distributed approach for optimal control of multi-zone ventilation systems considering indoor air quality and energy use," Applied Energy, Elsevier, vol. 275(C).
    4. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    5. Homod, Raad Z. & Gaeid, Khalaf S. & Dawood, Suroor M. & Hatami, Alireza & Sahari, Khairul S., 2020. "Evaluation of energy-saving potential for optimal time response of HVAC control system in smart buildings," Applied Energy, Elsevier, vol. 271(C).
    6. Ellen Matthies & Ingo Kastner & Andreas Klesse & Hermann-Josef Wagner, 2011. "High reduction potentials for energy user behavior in public buildings: how much can psychology-based interventions achieve?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 1(3), pages 241-255, September.
    7. D’Oca, Simona & Hong, Tianzhen & Langevin, Jared, 2018. "The human dimensions of energy use in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 731-742.
    8. Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seif Khiati & Rafik Belarbi & Ammar Yahia, 2023. "Sustainable Buildings: A Choice, or a Must for Our Future?," Energies, MDPI, vol. 16(6), pages 1-5, March.
    2. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    3. Paola Clerici Maestosi, 2022. "Smart Cities and Positive Energy Districts: Urban Perspectives in 2021," Energies, MDPI, vol. 15(6), pages 1-5, March.
    4. Alessandro Franco & Carlo Bartoli & Paolo Conti & Lorenzo Miserocchi & Daniele Testi, 2021. "Multi-Objective Optimization of HVAC Operation for Balancing Energy Use and Occupant Comfort in Educational Buildings," Energies, MDPI, vol. 14(10), pages 1-19, May.
    5. Moghadam, Talie T. & Ochoa Morales, Carlos E. & Lopez Zambrano, Maria J. & Bruton, Ken & O'Sullivan, Dominic T.J., 2023. "Energy efficient ventilation and indoor air quality in the context of COVID-19 - A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    6. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "Energy Intensity Reduction in Large-Scale Non-Residential Buildings by Dynamic Control of HVAC with Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Giovanni Bianco & Stefano Bracco & Federico Delfino & Lorenzo Gambelli & Michela Robba & Mansueto Rossi, 2020. "A Building Energy Management System Based on an Equivalent Electric Circuit Model," Energies, MDPI, vol. 13(7), pages 1-23, April.
    3. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    4. Li, Tao & Liu, Xiangyu & Li, Guannan & Wang, Xing & Ma, Jiangqiaoyu & Xu, Chengliang & Mao, Qianjun, 2024. "A systematic review and comprehensive analysis of building occupancy prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    5. Paulína Šujanová & Monika Rychtáriková & Tiago Sotto Mayor & Affan Hyder, 2019. "A Healthy, Energy-Efficient and Comfortable Indoor Environment, a Review," Energies, MDPI, vol. 12(8), pages 1-37, April.
    6. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    7. Mpho J. Lencwe & SP Daniel Chowdhury & Sipho Mahlangu & Maxwell Sibanyoni & Louwrance Ngoma, 2021. "An Efficient HVAC Network Control for Safety Enhancement of a Typical Uninterrupted Power Supply Battery Storage Room," Energies, MDPI, vol. 14(16), pages 1-23, August.
    8. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Mitigation analysis of water consumption for power generation and air conditioning of residential buildings: Case study of Saudi Arabia," Applied Energy, Elsevier, vol. 290(C).
    9. Tan Yigitcanlar & Kevin C. Desouza & Luke Butler & Farnoosh Roozkhosh, 2020. "Contributions and Risks of Artificial Intelligence (AI) in Building Smarter Cities: Insights from a Systematic Review of the Literature," Energies, MDPI, vol. 13(6), pages 1-38, March.
    10. Laura J. Elstub & Shimra J. Fine & Karl E. Zelik, 2021. "Exoskeletons and Exosuits Could Benefit from Mode-Switching Body Interfaces That Loosen/Tighten to Improve Thermal Comfort," IJERPH, MDPI, vol. 18(24), pages 1-12, December.
    11. Davor Stjelja & Juha Jokisalo & Risto Kosonen, 2022. "Scalable Room Occupancy Prediction with Deep Transfer Learning Using Indoor Climate Sensor," Energies, MDPI, vol. 15(6), pages 1-21, March.
    12. Ribeiro, Thatiana Jessica da Silva & Mady, Carlos Eduardo Keutenedjian, 2022. "Comparison among exergy analysis methods applied to a human body thermal model," Energy, Elsevier, vol. 239(PE).
    13. Bruno Malet-Damour & Jean-Pierre Habas & Dimitri Bigot, 2023. "Is Loose-Fill Plastic Waste an Opportunity for Thermal Insulation in Cold and Humid Tropical Climates?," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    14. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    15. Abdelhamid Zaidi & Samuel-Soma M. Ajibade & Majd Musa & Festus Victor Bekun, 2023. "New Insights into the Research Landscape on the Application of Artificial Intelligence in Sustainable Smart Cities: A Bibliometric Mapping and Network Analysis Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 287-299, July.
    16. Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
    17. Jie Gao & Xinping Huang & Lili Zhang, 2019. "Comparative Analysis between International Research Hotspots and National-Level Policy Keywords on Artificial Intelligence in China from 2009 to 2018," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    18. Amir Faraji & Maria Rashidi & Fatemeh Rezaei & Payam Rahnamayiezekavat, 2023. "A Meta-Synthesis Review of Occupant Comfort Assessment in Buildings (2002–2022)," Sustainability, MDPI, vol. 15(5), pages 1-36, February.
    19. Kim, Myung Ja & Hall, C. Michael & Kwon, Ohbyung & Sohn, Kwonsang, 2024. "Space tourism: Value-attitude-behavior theory, artificial intelligence, and sustainability," Journal of Retailing and Consumer Services, Elsevier, vol. 77(C).
    20. Justyna Łapińska & Iwona Escher & Joanna Górka & Agata Sudolska & Paweł Brzustewicz, 2021. "Employees’ Trust in Artificial Intelligence in Companies: The Case of Energy and Chemical Industries in Poland," Energies, MDPI, vol. 14(7), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2124-:d:533790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.