IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5484-d628034.html
   My bibliography  Save this article

Design and Modeling of Metallic Bipolar Plates for a Fuel Cell Range Extender

Author

Listed:
  • Uwe Reimer

    (Forschungszentrum Jülich GmbH, IEK-14: Electrochemical Process Engineering, 52425 Jülich, Germany)

  • Ekaterina Nikitsina

    (Forschungszentrum Jülich GmbH, IEK-14: Electrochemical Process Engineering, 52425 Jülich, Germany)

  • Holger Janßen

    (Forschungszentrum Jülich GmbH, IEK-14: Electrochemical Process Engineering, 52425 Jülich, Germany)

  • Martin Müller

    (Forschungszentrum Jülich GmbH, IEK-14: Electrochemical Process Engineering, 52425 Jülich, Germany)

  • Dieter Froning

    (Forschungszentrum Jülich GmbH, IEK-14: Electrochemical Process Engineering, 52425 Jülich, Germany)

  • Steven B. Beale

    (Forschungszentrum Jülich GmbH, IEK-14: Electrochemical Process Engineering, 52425 Jülich, Germany
    Mechanical and Materials Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada)

  • Werner Lehnert

    (Forschungszentrum Jülich GmbH, IEK-14: Electrochemical Process Engineering, 52425 Jülich, Germany
    Modeling in Electrochemical Process Engineering, RWTH Aachen University, 52056 Aachen, Germany)

Abstract

Fuel cells, designed for mobile applications, should feature compact and low-weight designs. This study describes a design process that fulfills the specific needs of target applications and the production process. The key challenge for this type of metallic bipolar plate is that the combination of two plates creates three flow fields, namely an anode side, a cathode side, and a coolant. This illustrates the fact that each cell constitutes an electrochemical converter with an integrated heat exchanger. The final arrangement is comprised of plates with parallel and separate serpentine channel configurations. The anode and cathode sides are optimized for operation under dry conditions. The final plate offers an almost perfect distribution of coolant flow over the active area. The high quality of this distribution is almost independent of the coolant mass flow, even if one of the six inlet channels is blocked. The software employed (OpenFOAM and SALOME) is freely available and can be used with templates.

Suggested Citation

  • Uwe Reimer & Ekaterina Nikitsina & Holger Janßen & Martin Müller & Dieter Froning & Steven B. Beale & Werner Lehnert, 2021. "Design and Modeling of Metallic Bipolar Plates for a Fuel Cell Range Extender," Energies, MDPI, vol. 14(17), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5484-:d:628034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5484/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5484/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Izaskun Alvarez-Meaza & Enara Zarrabeitia-Bilbao & Rosa Maria Rio-Belver & Gaizka Garechana-Anacabe, 2020. "Fuel-Cell Electric Vehicles: Plotting a Scientific and Technological Knowledge Map," Sustainability, MDPI, vol. 12(6), pages 1-25, March.
    2. Giacoppo, Giosuè & Hovland, Scott & Barbera, Orazio, 2019. "2 kW Modular PEM fuel cell stack for space applications: Development and test for operation under relevant conditions," Applied Energy, Elsevier, vol. 242(C), pages 1683-1696.
    3. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    4. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    5. Seiho Kim & Jaesik Lee & Chulung Lee, 2017. "Does Driving Range of Electric Vehicles Influence Electric Vehicle Adoption?," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    6. Zhang, S. & Reimer, U. & Beale, S.B. & Lehnert, W. & Stolten, D., 2019. "Modeling polymer electrolyte fuel cells: A high precision analysis," Applied Energy, Elsevier, vol. 233, pages 1094-1103.
    7. Olivier Bethoux, 2020. "Hydrogen Fuel Cell Road Vehicles: State of the Art and Perspectives," Energies, MDPI, vol. 13(21), pages 1-28, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    2. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    3. Song, Ke & Wang, Yimin & Ding, Yuhang & Xu, Hongjie & Mueller-Welt, Philip & Stuermlinger, Tobias & Bause, Katharina & Ehrmann, Christopher & Weinmann, Hannes W. & Schaefer, Jens & Fleischer, Juergen , 2022. "Assembly techniques for proton exchange membrane fuel cell stack: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    4. Emanuele Fedele & Luigi Pio Di Noia & Renato Rizzo, 2023. "Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation," Energies, MDPI, vol. 16(7), pages 1-13, March.
    5. Xiong, Siqin & Yuan, Yi & Yao, Jia & Bai, Bo & Ma, Xiaoming, 2023. "Exploring consumer preferences for electric vehicles based on the random coefficient logit model," Energy, Elsevier, vol. 263(PA).
    6. Christian Wankmüller & Maximilian Kunovjanek & Robert Gennaro Sposato & Gerald Reiner, 2020. "Selecting E-Mobility Transport Solutions for Mountain Rescue Operations," Energies, MDPI, vol. 13(24), pages 1-19, December.
    7. Li, Menglin & Yin, Long & Yan, Mei & Wu, Jingda & He, Hongwe & Jia, Chunchun, 2024. "Hierarchical intelligent energy-saving control strategy for fuel cell hybrid electric buses based on traffic flow predictions," Energy, Elsevier, vol. 304(C).
    8. Oh, Taek Hyun, 2021. "Effect of cathode conditions on performance of direct borohydride–hydrogen peroxide fuel cell system for space exploration," Renewable Energy, Elsevier, vol. 178(C), pages 1156-1164.
    9. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    10. Jacobus Nel & Roula Inglesi-Lotz, 2022. "Electric Vehicles Market and Policy Conditions: Identifying South African Policy ``Potholes"," Working Papers 202257, University of Pretoria, Department of Economics.
    11. Hossein Shayeghi & Ali Seifi & Majid Hosseinpour & Nicu Bizon, 2022. "Developing a Generalized Multi-Level Inverter with Reduced Number of Power Electronics Components," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    12. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Doyeon Lee & Keunhwan Kim, 2021. "Research and Development Investment and Collaboration Framework for the Hydrogen Economy in South Korea," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
    14. Jiaming Zhou & Chunxiao Feng & Qingqing Su & Shangfeng Jiang & Zhixian Fan & Jiageng Ruan & Shikai Sun & Leli Hu, 2022. "The Multi-Objective Optimization of Powertrain Design and Energy Management Strategy for Fuel Cell–Battery Electric Vehicle," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    15. Gianmarco Gottardo & Andrea Basso Peressut & Silvia Colnago & Saverio Latorrata & Luigi Piegari & Giovanni Dotelli, 2023. "LCA of a Proton Exchange Membrane Fuel Cell Electric Vehicle Considering Different Power System Architectures," Energies, MDPI, vol. 16(19), pages 1-19, September.
    16. Georgios Varvoutis & Athanasios Lampropoulos & Evridiki Mandela & Michalis Konsolakis & George E. Marnellos, 2022. "Recent Advances on CO 2 Mitigation Technologies: On the Role of Hydrogenation Route via Green H 2," Energies, MDPI, vol. 15(13), pages 1-38, June.
    17. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    18. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    19. Costa, C.M. & Barbosa, J.C. & Castro, H. & Gonçalves, R. & Lanceros-Méndez, S., 2021. "Electric vehicles: To what extent are environmentally friendly and cost effective? – Comparative study by european countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Chu, Tiankuo & Tang, Qianwen & Wang, Qinpu & Wang, Yanbo & Du, Hong & Guo, YuQing & Li, Bing & Yang, Daijun & Ming, Pingwen & Zhang, Cunman, 2023. "Experimental study on the effect of flow channel parameters on the durability of PEMFC stack and analysis of hydrogen crossover mechanism," Energy, Elsevier, vol. 264(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5484-:d:628034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.