IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v178y2021icp1156-1164.html
   My bibliography  Save this article

Effect of cathode conditions on performance of direct borohydride–hydrogen peroxide fuel cell system for space exploration

Author

Listed:
  • Oh, Taek Hyun

Abstract

Fuel cell tests are conducted under various cathode conditions to investigate the effect of cathode conditions on the performance of a direct borohydride–hydrogen peroxide fuel cell (DBHPFC) system. The efficiency and mass of the virtual DBHPFC system are estimated based on experimental data obtained from the fuel cell tests. The type of cathode electrocatalyst considerably affects the performance and mass of the fuel cell system. Ni is the most suitable for the cathode owing to its high fuel utilization efficiency and low cost. The H2O2 concentration has a minimal effect on the performance of the fuel cell system but considerably affects the mass of the fuel cell system. The mass of the fuel cell system negatively correlates with the H2O2 concentration. The H3PO4 concentration and operating temperature have a negligible effect on the performance and mass of the fuel cell system; 5 wt% H3PO4 is sufficient to suppress the decomposition reaction and improve the fuel cell performance. Operation at room temperature is recommended for high fuel utilization efficiency. The decomposition reaction rate affects the efficiency and mass of the DBHPFC system. Consequently, the decomposition and electrochemical reaction rates should be considered when determining suitable cathode conditions for the DBHPFC system.

Suggested Citation

  • Oh, Taek Hyun, 2021. "Effect of cathode conditions on performance of direct borohydride–hydrogen peroxide fuel cell system for space exploration," Renewable Energy, Elsevier, vol. 178(C), pages 1156-1164.
  • Handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1156-1164
    DOI: 10.1016/j.renene.2021.06.137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010041
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.06.137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2014. "Performance evaluation of direct borohydride–hydrogen peroxide fuel cells with electrocatalysts supported on multiwalled carbon nanotubes," Energy, Elsevier, vol. 76(C), pages 911-919.
    2. Oh, Taek Hyun, 2021. "Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 163(C), pages 930-938.
    3. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    4. Giacoppo, Giosuè & Hovland, Scott & Barbera, Orazio, 2019. "2 kW Modular PEM fuel cell stack for space applications: Development and test for operation under relevant conditions," Applied Energy, Elsevier, vol. 242(C), pages 1683-1696.
    5. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    6. Prashant S. Khadke & Pitchumani Sethuraman & Palanivelu Kandasamy & Sridhar Parthasarathi & Ashok K. Shukla, 2009. "A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System," Energies, MDPI, vol. 2(2), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oh, Taek Hyun, 2021. "Gold-based bimetallic electrocatalysts supported on multiwalled carbon nanotubes for direct borohydride–hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 163(C), pages 930-938.
    2. Oh, Taek Hyun & Jang, Bosun & Kwon, Sejin, 2015. "Estimating the energy density of direct borohydride–hydrogen peroxide fuel cell systems for air-independent propulsion applications," Energy, Elsevier, vol. 90(P1), pages 980-986.
    3. Yin, Xianzhi & Hou, Meiling & Zhu, Kai & Ye, Ke & Yan, Jun & Cao, Dianxue & Zhang, Dongming & Yao, Jiaxin & Wang, Guiling, 2022. "PdCu nanoparticles modified free-standing reduced graphene oxide framework as a highly efficient catalyst for direct borohydride-hydrogen peroxide fuel cell," Renewable Energy, Elsevier, vol. 201(P1), pages 160-170.
    4. Stoševski, Ivan & Krstić, Jelena & Milikić, Jadranka & Šljukić, Biljana & Kačarević-Popović, Zorica & Mentus, Slavko & Miljanić, Šćepan, 2016. "Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells," Energy, Elsevier, vol. 101(C), pages 79-90.
    5. Hosseini, M.G. & Mahmoodi, R. & Sadeghi Amjadi, M., 2017. "Carbon supported Ni1Pt1 nanocatalyst as superior electrocatalyst with increased power density in direct borohydride-hydrogen peroxide and investigation of cell impedance at different temperatures and ," Energy, Elsevier, vol. 131(C), pages 137-148.
    6. Santos, D.M.F. & Sequeira, C.A.C., 2011. "Sodium borohydride as a fuel for the future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3980-4001.
    7. Kiyani, Roya & Rowshanzamir, Soosan & Parnian, Mohammad Javad, 2016. "Nitrogen doped graphene supported palladium-cobalt as a promising catalyst for methanol oxidation reaction: Synthesis, characterization and electrocatalytic performance," Energy, Elsevier, vol. 113(C), pages 1162-1173.
    8. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    9. Cai, Haokun & Liu, Liping & Chen, Qiang & Lu, Ping & Dong, Jian, 2016. "Ni-polymer nanogel hybrid particles: A new strategy for hydrogen production from the hydrolysis of dimethylamine-borane and sodium borohydride," Energy, Elsevier, vol. 99(C), pages 129-135.
    10. Yan, Xiaohui & Lin, Chen & Zheng, Zhifeng & Chen, Junren & Wei, Guanghua & Zhang, Junliang, 2020. "Effect of clamping pressure on liquid-cooled PEMFC stack performance considering inhomogeneous gas diffusion layer compression," Applied Energy, Elsevier, vol. 258(C).
    11. Pu, Zonghua & Zhang, Gaixia & Hassanpour, Amir & Zheng, Dewen & Wang, Shanyu & Liao, Shijun & Chen, Zhangxin & Sun, Shuhui, 2021. "Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system," Applied Energy, Elsevier, vol. 283(C).
    12. Zeng, Zilong & Jing, Dengwei & Guo, Liejin, 2021. "Efficient hydrogen production in a spotlight reactor with plate photocatalyst of TiO2/NiO heterojunction supported on nickel foam," Energy, Elsevier, vol. 228(C).
    13. Abdul Ghani Olabi & Tabbi Wilberforce & Abdulrahman Alanazi & Parag Vichare & Enas Taha Sayed & Hussein M. Maghrabie & Khaled Elsaid & Mohammad Ali Abdelkareem, 2022. "Novel Trends in Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 15(14), pages 1-35, July.
    14. Meng, Kai & Zhou, Haoran & Chen, Ben & Tu, Zhengkai, 2021. "Dynamic current cycles effect on the degradation characteristic of a H2/O2 proton exchange membrane fuel cell," Energy, Elsevier, vol. 224(C).
    15. Liu, Yang & Zhao, Junjie & Tu, Zhengkai, 2024. "Detecting performance degradation in a dead-ended hydrogen-oxygen proton exchange membrane fuel cell used for an unmanned underwater vehicle," Renewable Energy, Elsevier, vol. 222(C).
    16. Xing, Shuang & Zhao, Chen & Liu, Wei & Zou, Jiexin & Chen, Ming & Wang, Haijiang, 2021. "Effects of bolt torque and gasket geometric parameters on open-cathode polymer electrolyte fuel cells," Applied Energy, Elsevier, vol. 303(C).
    17. Oh, Taek Hyun & Gang, Byeong Gyu & Kim, Hyuntak & Kwon, Sejin, 2015. "Sodium borohydride hydrogen generator using Co–P/Ni foam catalysts for 200 W proton exchange membrane fuel cell system," Energy, Elsevier, vol. 90(P1), pages 1163-1170.
    18. Oh, Taek Hyun, 2016. "A formic acid hydrogen generator using Pd/C3N4 catalyst for mobile proton exchange membrane fuel cell systems," Energy, Elsevier, vol. 112(C), pages 679-685.
    19. Heng-Yi Lee & Yi-Hsuan Hsu & Po-Hong Tsai & Jiunn-Yih Lee & Yong-Song Chen, 2017. "The Performance of a Direct Borohydride/Peroxide Fuel Cell Using Graphite Felts as Electrodes," Energies, MDPI, vol. 10(8), pages 1-7, August.
    20. An, L. & Jung, C.Y., 2017. "Transport phenomena in direct borohydride fuel cells," Applied Energy, Elsevier, vol. 205(C), pages 1270-1282.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:178:y:2021:i:c:p:1156-1164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.