Model compound approach to design process and select catalysts for in-situ bio-oil upgrading
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2014.04.050
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bridgwater, A. V. & Peacocke, G. V. C., 2000. "Fast pyrolysis processes for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(1), pages 1-73, March.
- Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
- Chiaramonti, David & Oasmaa, Anja & Solantausta, Yrjö, 2007. "Power generation using fast pyrolysis liquids from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1056-1086, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.
- Chaihad, Nichaboon & Karnjanakom, Surachai & Kurnia, Irwan & Yoshida, Akihiro & Abudula, Abuliti & Reubroycharoen, Prasert & Guan, Guoqing, 2019. "Catalytic upgrading of bio-oils over high alumina zeolites," Renewable Energy, Elsevier, vol. 136(C), pages 1304-1310.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
- Waheed A. Rasaq & Mateusz Golonka & Miklas Scholz & Andrzej Białowiec, 2021. "Opportunities and Challenges of High-Pressure Fast Pyrolysis of Biomass: A Review," Energies, MDPI, vol. 14(17), pages 1-20, August.
- Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
- Sulaiman, F. & Abdullah, N., 2011. "Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches," Energy, Elsevier, vol. 36(5), pages 2352-2359.
- Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
- Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
- Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
- Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Braimakis, Konstantinos & Atsonios, Konstantinos & Panopoulos, Kyriakos D. & Karellas, Sotirios & Kakaras, Emmanuel, 2014. "Economic evaluation of decentralized pyrolysis for the production of bio-oil as an energy carrier for improved logistics towards a large centralized gasification plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 57-72.
- Douvartzides, Savvas & Charisiou, Nikolaos D. & Wang, Wen & Papadakis, Vagelis G. & Polychronopoulou, Kyriaki & Goula, Maria A., 2022. "Catalytic fast pyrolysis of agricultural residues and dedicated energy crops for the production of high energy density transportation biofuels. Part I: Chemical pathways and bio-oil upgrading," Renewable Energy, Elsevier, vol. 185(C), pages 483-505.
- Qiang Lu & Zhi-Bo Zhang & Hang-Tao Liao & Xiao-Chu Yang & Chang-Qing Dong, 2012. "Lubrication Properties of Bio-Oil and Its Emulsions with Diesel Oil," Energies, MDPI, vol. 5(3), pages 1-11, March.
- Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
- Echresh Zadeh, Zahra & Abdulkhani, Ali & Saha, Basudeb, 2021. "A comparative production and characterisation of fast pyrolysis bio-oil from Populus and Spruce woods," Energy, Elsevier, vol. 214(C).
- Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
- Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
- No, Soo-Young, 2014. "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1108-1125.
- Rezaei, Hamid & Sokhansanj, Shahab, 2018. "Physical and thermal characterization of ground bark and ground wood particles," Renewable Energy, Elsevier, vol. 129(PA), pages 583-590.
- Qiang Lu & Zhi-Fei Zhang & Chang-Qing Dong & Xi-Feng Zhu, 2010. "Catalytic Upgrading of Biomass Fast Pyrolysis Vapors with Nano Metal Oxides: An Analytical Py-GC/MS Study," Energies, MDPI, vol. 3(11), pages 1-16, November.
- Kan, Tao & Strezov, Vladimir & Evans, Tim J., 2016. "Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1126-1140.
- Chen, Dengyu & Zhou, Jianbin & Zhang, Qisheng & Zhu, Xifeng, 2014. "Evaluation methods and research progresses in bio-oil storage stability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 69-79.
More about this item
Keywords
Bio-oil; In-situ upgrading; Model compound; Catalyst; Process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:286-303. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.