IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v42y2012i1p364-374.html
   My bibliography  Save this article

The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends

Author

Listed:
  • Sukjit, E.
  • Herreros, J.M.
  • Dearn, K.D.
  • García-Contreras, R.
  • Tsolakis, A.

Abstract

Biodiesel fuel is known to improve the properties of alcohol-diesel blends for use in compression ignition engines. In this work the effects on combustion characteristics and emissions of preselected methyl esters (i.e. biodiesel components) have been assessed. The most representative individual fatty acid methyl esters (FAMEs) were added to alcohol blends in order to understand the effect of carbon chain length and degree of unsaturation on combustion and emissions. The effects of alcohol addition on the properties of fuel blends were also investigated using ethanol and butanol. Relating to the physical properties, emphasis was given to both stability and lubricity of alcohol-diesel blends. The results showed that 15% of all methyl esters was enough to avoid phase separation of alcohol-diesel blends and keep the wear scar diameter of the blends below the limitation required by the lubricity standard. For combustion, the use of alcohol blends shows a clear benefit in terms of CO and soot emissions with respect to biodiesel blends with the same oxygen content. Short carbon chain length and saturated methyl esters are recommended to improve alcohol blends. Comparisons between the alcohols, show that butanol rather than ethanol produces lower CO, THC and soot emissions.

Suggested Citation

  • Sukjit, E. & Herreros, J.M. & Dearn, K.D. & García-Contreras, R. & Tsolakis, A., 2012. "The effect of the addition of individual methyl esters on the combustion and emissions of ethanol and butanol -diesel blends," Energy, Elsevier, vol. 42(1), pages 364-374.
  • Handle: RePEc:eee:energy:v:42:y:2012:i:1:p:364-374
    DOI: 10.1016/j.energy.2012.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544212002320
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rakopoulos, C.D. & Antonopoulos, K.A. & Rakopoulos, D.C., 2007. "Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends," Energy, Elsevier, vol. 32(10), pages 1791-1808.
    2. Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C., 2010. "Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends," Energy, Elsevier, vol. 35(12), pages 5173-5184.
    3. Lee, Wen-Jhy & Liu, Yi-Cheng & Mwangi, Francis Kimani & Chen, Wei-Hsin & Lin, Sheng-Lun & Fukushima, Yasuhiro & Liao, Chao-Ning & Wang, Lin-Chi, 2011. "Assessment of energy performance and air pollutant emissions in a diesel engine generator fueled with water-containing ethanol–biodiesel–diesel blend of fuels," Energy, Elsevier, vol. 36(9), pages 5591-5599.
    4. Tsolakis, A. & Megaritis, A. & Wyszynski, M.L. & Theinnoi, K., 2007. "Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)," Energy, Elsevier, vol. 32(11), pages 2072-2080.
    5. Ishida, Masahiro & Yamamoto, Shohei & Ueki, Hironobu & Sakaguchi, Daisaku, 2010. "Remarkable improvement of NOx–PM trade-off in a diesel engine by means of bioethanol and EGR," Energy, Elsevier, vol. 35(12), pages 4572-4581.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    2. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    3. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.
    4. Kasiraman, G. & Nagalingam, B. & Balakrishnan, M., 2012. "Performance, emission and combustion improvements in a direct injection diesel engine using cashew nut shell oil as fuel with camphor oil blending," Energy, Elsevier, vol. 47(1), pages 116-124.
    5. Gvidonas Labeckas & Stasys Slavinskas & Irena Kanapkienė, 2019. "Study of the Effects of Biofuel-Oxygen of Various Origins on a CRDI Diesel Engine Combustion and Emissions," Energies, MDPI, vol. 12(7), pages 1-49, April.
    6. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    7. Wei, Liangjie & Cheung, C.S. & Huang, Zuohua, 2014. "Effect of n-pentanol addition on the combustion, performance and emission characteristics of a direct-injection diesel engine," Energy, Elsevier, vol. 70(C), pages 172-180.
    8. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Papagiannakis, Roussos G. & Kyritsis, Dimitrios C., 2014. "Influence of properties of various common bio-fuels on the combustion and emission characteristics of high-speed DI (direct injection) diesel engine: Vegetable oil, bio-diesel, ethanol, n-butanol, die," Energy, Elsevier, vol. 73(C), pages 354-366.
    9. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    10. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    11. Sarjovaara, Teemu & Alantie, Jussi & Larmi, Martti, 2013. "Ethanol dual-fuel combustion concept on heavy duty engine," Energy, Elsevier, vol. 63(C), pages 76-85.
    12. Gong, Chang-Ming & Huang, Kuo & Jia, Jing-Long & Su, Yan & Gao, Qing & Liu, Xun-Jun, 2011. "Regulated emissions from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 36(5), pages 3379-3387.
    13. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    14. Jaichandar, S. & Annamalai, K., 2012. "Influences of re-entrant combustion chamber geometry on the performance of Pongamia biodiesel in a DI diesel engine," Energy, Elsevier, vol. 44(1), pages 633-640.
    15. Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Giakoumis, Evangelos G. & Rakopoulos, Dimitrios C., 2010. "Investigating the emissions during acceleration of a turbocharged diesel engine operating with bio-diesel or n-butanol diesel fuel blends," Energy, Elsevier, vol. 35(12), pages 5173-5184.
    16. Giakoumis, Evangelos G. & Rakopoulos, Constantine D. & Dimaratos, Athanasios M. & Rakopoulos, Dimitrios C., 2013. "Exhaust emissions with ethanol or n-butanol diesel fuel blends during transient operation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 170-190.
    17. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    18. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Esarte, Claudia & Abián, María & Millera, Ángela & Bilbao, Rafael & Alzueta, María U., 2012. "Gas and soot products formed in the pyrolysis of acetylene mixed with methanol, ethanol, isopropanol or n-butanol," Energy, Elsevier, vol. 43(1), pages 37-46.
    20. Park, Su Han & Cha, Junepyo & Lee, Chang Sik, 2012. "Impact of biodiesel in bioethanol blended diesel on the engine performance and emissions characteristics in compression ignition engine," Applied Energy, Elsevier, vol. 99(C), pages 334-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:42:y:2012:i:1:p:364-374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.