IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5284-d622138.html
   My bibliography  Save this article

Hybrid System Assessment in On-Grid and Off-Grid Conditions: A Technical and Economical Approach

Author

Listed:
  • Jonathan Muñoz Tabora

    (Post-Graduate Program in Electrical Engineering, Federal University of Para, Belém 66075-110, Brazil)

  • Ulisses Carvalho Paixão Júnior

    (Post-Graduate Program in Electrical Engineering, Federal University of Para, Belém 66075-110, Brazil)

  • Carlos Eduardo Moreira Rodrigues

    (Post-Graduate Program in Electrical Engineering, Federal University of Para, Belém 66075-110, Brazil)

  • Ubiratan Holanda Bezerra

    (Post-Graduate Program in Electrical Engineering, Federal University of Para, Belém 66075-110, Brazil)

  • Maria Emília de Lima Tostes

    (Post-Graduate Program in Electrical Engineering, Federal University of Para, Belém 66075-110, Brazil)

  • Bruno S. de Albuquerque

    (Post-Graduate Program in Electrical Engineering, Federal University of Para, Belém 66075-110, Brazil)

  • Edson Ortiz de Matos

    (Post-Graduate Program in Electrical Engineering, Federal University of Para, Belém 66075-110, Brazil)

  • Andréia Antloga do Nascimento

    (Norte Energia S.A., Brasilia 70390-025, Brazil)

Abstract

Photovoltaic systems can strengthen the energy matrix aiming at energy sustainability, however, their intermittence, the availability time frame and seasonality effects are complicating aspects for the operation of these systems. To mitigate such problems, a possible measure is the operation of hybrid systems (HS) associated with storage systems to meet the energy demand. This study presents real operational scenarios for the management of a hybrid mini-grid installed in the Amazon region in Brazil, capable of managing energy supply and demand, changing the generation curve, reducing fossil fuel consumption and energy costs, in addition to providing flexibility and operational safety to the electrical operating under on-grid or off-grid conditions. Through technical and economic analyses, the objective of this study is to show that hybrid systems can be implemented in small and medium consumers, in addition to generating a new market option for utilities. This research evaluates the operation of HS concurrently with the electrical grid and the results show that the system meets the technical requirements, in addition to bringing financial and ecological benefits. This information can support the decisions of consumers, utilities and energy operators for the development of the national market for on-grid and off-grid HS.

Suggested Citation

  • Jonathan Muñoz Tabora & Ulisses Carvalho Paixão Júnior & Carlos Eduardo Moreira Rodrigues & Ubiratan Holanda Bezerra & Maria Emília de Lima Tostes & Bruno S. de Albuquerque & Edson Ortiz de Matos & An, 2021. "Hybrid System Assessment in On-Grid and Off-Grid Conditions: A Technical and Economical Approach," Energies, MDPI, vol. 14(17), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5284-:d:622138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5284/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5284/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Viviescas, Cindy & Lima, Lucas & Diuana, Fabio A. & Vasquez, Eveline & Ludovique, Camila & Silva, Gabriela N. & Huback, Vanessa & Magalar, Leticia & Szklo, Alexandre & Lucena, André F.P. & Schaeffer, , 2019. "Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Ferraz de Andrade Santos, José Alexandre & de Jong, Pieter & Alves da Costa, Caiuby & Torres, Ednildo Andrade, 2020. "Combining wind and solar energy sources: Potential for hybrid power generation in Brazil," Utilities Policy, Elsevier, vol. 67(C).
    3. Prüggler, Natalie & Prüggler, Wolfgang & Wirl, Franz, 2011. "Storage and Demand Side Management as power generator’s strategic instruments to influence demand and prices," Energy, Elsevier, vol. 36(11), pages 6308-6317.
    4. Yu Miao & Patrick Hynan & Annette von Jouanne & Alexandre Yokochi, 2019. "Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements," Energies, MDPI, vol. 12(6), pages 1-20, March.
    5. Tatiane Silva Costa & Marcelo Gradella Villalva, 2020. "Technical Evaluation of a PV-Diesel Hybrid System with Energy Storage: Case Study in the Tapajós-Arapiuns Extractive Reserve, Amazon, Brazil," Energies, MDPI, vol. 13(11), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    2. Desreveaux, A. & Bouscayrol, A. & Trigui, R. & Hittinger, E. & Castex, E. & Sirbu, G.M., 2023. "Accurate energy consumption for comparison of climate change impact of thermal and electric vehicles," Energy, Elsevier, vol. 268(C).
    3. Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
    4. Anisa Surya Wijareni & Hendri Widiyandari & Agus Purwanto & Aditya Farhan Arif & Mohammad Zaki Mubarok, 2022. "Morphology and Particle Size of a Synthesized NMC 811 Cathode Precursor with Mixed Hydroxide Precipitate and Nickel Sulfate as Nickel Sources and Comparison of Their Electrochemical Performances in an," Energies, MDPI, vol. 15(16), pages 1-15, August.
    5. Alexandru Ciocan & Cosmin Ungureanu & Alin Chitu & Elena Carcadea & George Darie, 2020. "Electrical Longboard for Everyday Urban Commuting," Sustainability, MDPI, vol. 12(19), pages 1-14, September.
    6. Piotr Krawczyk & Anna Śliwińska, 2020. "Eco-Efficiency Assessment of the Application of Large-Scale Rechargeable Batteries in a Coal-Fired Power Plant," Energies, MDPI, vol. 13(6), pages 1-16, March.
    7. Jack E. N. Swallow & Michael W. Fraser & Nis-Julian H. Kneusels & Jodie F. Charlton & Christopher G. Sole & Conor M. E. Phelan & Erik Björklund & Peter Bencok & Carlos Escudero & Virginia Pérez-Dieste, 2022. "Revealing solid electrolyte interphase formation through interface-sensitive Operando X-ray absorption spectroscopy," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Constantino Dário Justo & José Eduardo Tafula & Pedro Moura, 2022. "Planning Sustainable Energy Systems in the Southern African Development Community: A Review of Power Systems Planning Approaches," Energies, MDPI, vol. 15(21), pages 1-28, October.
    9. González, L.G. & Cordero-Moreno, Daniel & Espinoza, J.L., 2021. "Public transportation with electric traction: Experiences and challenges in an Andean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Harika Dasari & Eric Eisenbraun, 2021. "Predicting Capacity Fade in Silicon Anode-Based Li-Ion Batteries," Energies, MDPI, vol. 14(5), pages 1-16, March.
    11. Sewon Kim & Ju-Sik Kim & Lincoln Miara & Yan Wang & Sung-Kyun Jung & Seong Yong Park & Zhen Song & Hyungsub Kim & Michael Badding & JaeMyung Chang & Victor Roev & Gabin Yoon & Ryounghee Kim & Jung-Hwa, 2022. "High-energy and durable lithium metal batteries using garnet-type solid electrolytes with tailored lithium-metal compatibility," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    12. Vázquez, Rubén & Cabos, William & Nieto-Borge, José Carlos & Gutiérrez, Claudia, 2024. "Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy," Renewable Energy, Elsevier, vol. 224(C).
    13. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    14. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    15. Deepika Bishnoi & Harsh Chaturvedi, 2022. "Optimal Design of a Hybrid Energy System for Economic and Environmental Sustainability of Onshore Oil and Gas Fields," Energies, MDPI, vol. 15(6), pages 1-21, March.
    16. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    17. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    18. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    19. Artur Kozłowski & Łukasz Bołoz, 2021. "Design and Research on Power Systems and Algorithms for Controlling Electric Underground Mining Machines Powered by Batteries," Energies, MDPI, vol. 14(13), pages 1-21, July.
    20. Jemma J. Makrygiorgou & Antonio T. Alexandridis, 2019. "Power Electronic Control Design for Stable EV Motor and Battery Operation during a Route," Energies, MDPI, vol. 12(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5284-:d:622138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.