IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123014659.html
   My bibliography  Save this article

Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States

Author

Listed:
  • Bracken, Cameron
  • Voisin, Nathalie
  • Burleyson, Casey D.
  • Campbell, Allison M.
  • Hou, Z. Jason
  • Broman, Daniel

Abstract

As we move towards a decarbonized grid, reliance on weather-dependent energy increases as does exposure to prolonged natural resource shortages known as energy droughts. Compound energy droughts occur when two or more predominant renewable energy sources simultaneously are in drought conditions. In this study we present a methodology and dataset for examining compound wind and solar energy droughts as well as the first standardized benchmark of energy droughts across the Continental United States (CONUS) for a 2020 infrastructure. Using a recently developed dataset of simulated hourly plant level generation which includes thousands of wind and solar plants, we examine the frequency, duration, magnitude, and seasonality of energy droughts at a variety of temporal and spatial scales. Results are presented for 15 Balancing Authorities (BAs), regions of the U.S. power grid where wind and solar are must-take resources by the power grid and must be balanced. Compound wind and solar droughts are shown to have distinct spatial and temporal patterns across the CONUS. BA-level load is also included in the drought analysis to quantify events where high load is coincident with wind and solar droughts. We find that energy drought characteristics are regional and the longest droughts can last from 16 to 37 continuous hours, and up to 6 days. The longest hourly energy droughts occur in Texas while the longest daily droughts occur in California. Compound energy drought events that include load are more severe on average compared to events that involve only wind and solar. In addition, we find that compound high load events occur more often during compound wind and solar droughts that would be expected due to chance. The insights obtained from these findings and the summarized characteristics of energy drought provide valuable guidance on grid planning and storage sizing at the regional scale.

Suggested Citation

  • Bracken, Cameron & Voisin, Nathalie & Burleyson, Casey D. & Campbell, Allison M. & Hou, Z. Jason & Broman, Daniel, 2024. "Standardized benchmark of historical compound wind and solar energy droughts across the Continental United States," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014659
    DOI: 10.1016/j.renene.2023.119550
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014659
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. François, B. & Borga, M. & Creutin, J.D. & Hingray, B. & Raynaud, D. & Sauterleute, J.F., 2016. "Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy," Renewable Energy, Elsevier, vol. 86(C), pages 543-553.
    2. Mohammadi, Kasra & Goudarzi, Navid, 2018. "Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California," Renewable Energy, Elsevier, vol. 120(C), pages 190-200.
    3. Jakub Jurasz & Jerzy Mikulik & Paweł B. Dąbek & Mohammed Guezgouz & Bartosz Kaźmierczak, 2021. "Complementarity and ‘Resource Droughts’ of Solar and Wind Energy in Poland: An ERA5-Based Analysis," Energies, MDPI, vol. 14(4), pages 1-24, February.
    4. Ferraz de Andrade Santos, José Alexandre & de Jong, Pieter & Alves da Costa, Caiuby & Torres, Ednildo Andrade, 2020. "Combining wind and solar energy sources: Potential for hybrid power generation in Brazil," Utilities Policy, Elsevier, vol. 67(C).
    5. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    6. Potrč, Sanja & Nemet, Andreja & Čuček, Lidija & Varbanov, Petar Sabev & Kravanja, Zdravko, 2022. "Synthesis of a regenerative energy system – beyond carbon emissions neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. van der Wiel, K. & Stoop, L.P. & van Zuijlen, B.R.H. & Blackport, R. & van den Broek, M.A. & Selten, F.M., 2019. "Meteorological conditions leading to extreme low variable renewable energy production and extreme high energy shortfall," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 261-275.
    8. Sengupta, Manajit & Xie, Yu & Lopez, Anthony & Habte, Aron & Maclaurin, Galen & Shelby, James, 2018. "The National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 51-60.
    9. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    10. Bett, Philip E. & Thornton, Hazel E., 2016. "The climatological relationships between wind and solar energy supply in Britain," Renewable Energy, Elsevier, vol. 87(P1), pages 96-110.
    11. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    12. Bowen Li & Sukanta Basu & Simon J. Watson & Herman W. J. Russchenberg, 2021. "A Brief Climatology of Dunkelflaute Events over and Surrounding the North and Baltic Sea Areas," Energies, MDPI, vol. 14(20), pages 1-14, October.
    13. Raynaud, D. & Hingray, B. & François, B. & Creutin, J.D., 2018. "Energy droughts from variable renewable energy sources in European climates," Renewable Energy, Elsevier, vol. 125(C), pages 578-589.
    14. Allen, Sam & Otero, Noelia, 2023. "Standardised indices to monitor energy droughts," Renewable Energy, Elsevier, vol. 217(C).
    15. Dan Tong & David J. Farnham & Lei Duan & Qiang Zhang & Nathan S. Lewis & Ken Caldeira & Steven J. Davis, 2021. "Geophysical constraints on the reliability of solar and wind power worldwide," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    16. François, B. & Hingray, B. & Raynaud, D. & Borga, M. & Creutin, J.D., 2016. "Increasing climate-related-energy penetration by integrating run-of-the river hydropower to wind/solar mix," Renewable Energy, Elsevier, vol. 87(P1), pages 686-696.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org, revised Aug 2024.
    2. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanieh Seyedhashemi & Benoît Hingray & Christophe Lavaysse & Théo Chamarande, 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa," Energies, MDPI, vol. 14(11), pages 1-18, May.
    2. Lei, Hongxuan & Liu, Pan & Cheng, Qian & Xu, Huan & Liu, Weibo & Zheng, Yalian & Chen, Xiangding & Zhou, Yong, 2024. "Frequency, duration, severity of energy drought and its propagation in hydro-wind-photovoltaic complementary systems," Renewable Energy, Elsevier, vol. 230(C).
    3. Emmanouil, Stergios & Nikolopoulos, Efthymios I. & François, Baptiste & Brown, Casey & Anagnostou, Emmanouil N., 2021. "Evaluating existing water supply reservoirs as small-scale pumped hydroelectric storage options – A case study in Connecticut," Energy, Elsevier, vol. 226(C).
    4. Henao, Felipe & Viteri, Juan P. & Rodríguez, Yeny & Gómez, Juan & Dyner, Isaac, 2020. "Annual and interannual complementarities of renewable energy sources in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Allen, Sam & Otero, Noelia, 2023. "Standardised indices to monitor energy droughts," Renewable Energy, Elsevier, vol. 217(C).
    6. Pedruzzi, Rizzieri & Silva, Allan Rodrigues & Soares dos Santos, Thalyta & Araujo, Allan Cavalcante & Cotta Weyll, Arthur Lúcide & Lago Kitagawa, Yasmin Kaore & Nunes da Silva Ramos, Diogo & Milani de, 2023. "Review of mapping analysis and complementarity between solar and wind energy sources," Energy, Elsevier, vol. 283(C).
    7. Zuo, Jingping & Qian, Cuncun & Su, Bing & Ji, Hao & Xu, Yang & Peng, Zhipeng, 2024. "Evaluation of future renewable energy drought risk in China based on CMIP6," Renewable Energy, Elsevier, vol. 225(C).
    8. François, B. & Puspitarini, H.D. & Volpi, E. & Borga, M., 2022. "Statistical analysis of electricity supply deficits from renewable energy sources across an Alpine transect," Renewable Energy, Elsevier, vol. 201(P1), pages 1200-1212.
    9. Otero, Noelia & Martius, Olivia & Allen, Sam & Bloomfield, Hannah & Schaefli, Bettina, 2022. "A copula-based assessment of renewable energy droughts across Europe," Renewable Energy, Elsevier, vol. 201(P1), pages 667-677.
    10. Harrison-Atlas, Dylan & Murphy, Caitlin & Schleifer, Anna & Grue, Nicholas, 2022. "Temporal complementarity and value of wind-PV hybrid systems across the United States," Renewable Energy, Elsevier, vol. 201(P1), pages 111-123.
    11. Chu, Cheng-Ta & Hawkes, Adam D., 2020. "Optimal mix of climate-related energy in global electricity systems," Renewable Energy, Elsevier, vol. 160(C), pages 955-963.
    12. Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
    13. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    14. Berger, Mathias & Radu, David & Fonteneau, Raphaël & Henry, Robin & Glavic, Mevludin & Fettweis, Xavier & Le Du, Marc & Panciatici, Patrick & Balea, Lucian & Ernst, Damien, 2020. "Critical time windows for renewable resource complementarity assessment," Energy, Elsevier, vol. 198(C).
    15. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    16. Vázquez, Rubén & Cabos, William & Nieto-Borge, José Carlos & Gutiérrez, Claudia, 2024. "Complementarity of offshore energy resources on the Spanish coasts: Wind, wave, and photovoltaic energy," Renewable Energy, Elsevier, vol. 224(C).
    17. Handriyanti Diah Puspitarini & Baptiste François & Marco Baratieri & Casey Brown & Mattia Zaramella & Marco Borga, 2020. "Complementarity between Combined Heat and Power Systems, Solar PV and Hydropower at a District Level: Sensitivity to Climate Characteristics along an Alpine Transect," Energies, MDPI, vol. 13(16), pages 1-19, August.
    18. Baptiste François & Benoit Hingray & Marco Borga & Davide Zoccatelli & Casey Brown & Jean-Dominique Creutin, 2018. "Impact of Climate Change on Combined Solar and Run-of-River Power in Northern Italy," Energies, MDPI, vol. 11(2), pages 1-22, January.
    19. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    20. Caroline De Oliveira Costa Souza Rosa & Kelly Alonso Costa & Eliane Da Silva Christo & Pâmela Braga Bertahone, 2017. "Complementarity of Hydro, Photovoltaic, and Wind Power in Rio de Janeiro State," Sustainability, MDPI, vol. 9(7), pages 1-12, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123014659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.