IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v223y2021ics0360544220328553.html
   My bibliography  Save this article

Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification

Author

Listed:
  • Xu, Fang Yuan
  • Tang, Rui Xin
  • Xu, Si Bin
  • Fan, Yi Liang
  • Zhou, Ya
  • Zhang, Hao Tian

Abstract

Photovoltaic (PV) generation prediction is a critical technology for integrating solar energy in power systems and markets. Accuracy is the target for most PV prediction models, which represents the minimisation of the average error. However, minimisation of prediction error is to obtain a minimum cost from impact of prediction inaccuracy. The lowest average error may not always relate to the minimum cost. Thus, this paper proposes an integrated PV prediction structure that targets minimum industrial cost from prediction error other than using pure accuracy. The object of machine learning model is modified into the further industrial cost of prediction error, which is the cost of backup generation participation in power dispatch for power grid energy balancing. A feed-forward neural network is selected as typical machine learning model for integration. Additionally, to solve the nesting optimisation problem in network training, an equivalent model is constructed to remove the sub-optimisation and make gradient-based training optimisation feasible. A numerical study shows that the integrated structure leads to prediction results with a lower cost than those of an accuracy-based structure.

Suggested Citation

  • Xu, Fang Yuan & Tang, Rui Xin & Xu, Si Bin & Fan, Yi Liang & Zhou, Ya & Zhang, Hao Tian, 2021. "Neural network-based photovoltaic generation capacity prediction system with benefit-oriented modification," Energy, Elsevier, vol. 223(C).
  • Handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544220328553
    DOI: 10.1016/j.energy.2020.119748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220328553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
    2. Yang, Xiuyuan & Xu, Minglu & Xu, Shouchen & Han, Xiaojuan, 2017. "Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining," Applied Energy, Elsevier, vol. 206(C), pages 683-696.
    3. Zhou, Sheng & Wang, Yu & Zhou, Yuyu & Clarke, Leon E. & Edmonds, James A., 2018. "Roles of wind and solar energy in China’s power sector: Implications of intermittency constraints," Applied Energy, Elsevier, vol. 213(C), pages 22-30.
    4. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    5. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    6. Li, Jiaming & Ward, John K. & Tong, Jingnan & Collins, Lyle & Platt, Glenn, 2016. "Machine learning for solar irradiance forecasting of photovoltaic system," Renewable Energy, Elsevier, vol. 90(C), pages 542-553.
    7. Zhou, Yi & Zhou, Nanrun & Gong, Lihua & Jiang, Minlin, 2020. "Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine," Energy, Elsevier, vol. 204(C).
    8. Amrouche, Badia & Le Pivert, Xavier, 2014. "Artificial neural network based daily local forecasting for global solar radiation," Applied Energy, Elsevier, vol. 130(C), pages 333-341.
    9. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    10. Lin, Zhenjia & Chen, Haoyong & Wu, Qiuwei & Li, Weiwei & Li, Mengshi & Ji, Tianyao, 2020. "Mean-tracking model based stochastic economic dispatch for power systems with high penetration of wind power," Energy, Elsevier, vol. 193(C).
    11. Anagnostos, D. & Schmidt, T. & Cavadias, S. & Soudris, D. & Poortmans, J. & Catthoor, F., 2019. "A method for detailed, short-term energy yield forecasting of photovoltaic installations," Renewable Energy, Elsevier, vol. 130(C), pages 122-129.
    12. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    13. Han, Li & Jing, Huitian & Zhang, Rongchang & Gao, Zhiyu, 2019. "Wind power forecast based on improved Long Short Term Memory network," Energy, Elsevier, vol. 189(C).
    14. Cervone, Guido & Clemente-Harding, Laura & Alessandrini, Stefano & Delle Monache, Luca, 2017. "Short-term photovoltaic power forecasting using Artificial Neural Networks and an Analog Ensemble," Renewable Energy, Elsevier, vol. 108(C), pages 274-286.
    15. Gao, Mingming & Li, Jianjing & Hong, Feng & Long, Dongteng, 2019. "Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM," Energy, Elsevier, vol. 187(C).
    16. Lima, Marcello Anderson F.B. & Carvalho, Paulo C.M. & Fernández-Ramírez, Luis M. & Braga, Arthur P.S., 2020. "Improving solar forecasting using Deep Learning and Portfolio Theory integration," Energy, Elsevier, vol. 195(C).
    17. Yin, Wansi & Han, Yutong & Zhou, Hai & Ma, Ming & Li, Li & Zhu, Honglu, 2020. "A novel non-iterative correction method for short-term photovoltaic power forecasting," Renewable Energy, Elsevier, vol. 159(C), pages 23-32.
    18. Han, Shuang & Qiao, Yan-hui & Yan, Jie & Liu, Yong-qian & Li, Li & Wang, Zheng, 2019. "Mid-to-long term wind and photovoltaic power generation prediction based on copula function and long short term memory network," Applied Energy, Elsevier, vol. 239(C), pages 181-191.
    19. Gangqiang Li & Huaizhi Wang & Shengli Zhang & Jiantao Xin & Huichuan Liu, 2019. "Recurrent Neural Networks Based Photovoltaic Power Forecasting Approach," Energies, MDPI, vol. 12(13), pages 1-17, July.
    20. Hou, Hui & Xue, Mengya & Xu, Yan & Xiao, Zhenfeng & Deng, Xiangtian & Xu, Tao & Liu, Peng & Cui, Rongjian, 2020. "Multi-objective economic dispatch of a microgrid considering electric vehicle and transferable load," Applied Energy, Elsevier, vol. 262(C).
    21. Chen, Jie & Liu, Wei & Jiang, Deyi & Zhang, Junwei & Ren, Song & Li, Lin & Li, Xiaokang & Shi, Xilin, 2017. "Preliminary investigation on the feasibility of a clean CAES system coupled with wind and solar energy in China," Energy, Elsevier, vol. 127(C), pages 462-478.
    22. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "Photovoltaic power forecasting based LSTM-Convolutional Network," Energy, Elsevier, vol. 189(C).
    23. Hu, Shu-bo & Gao, Zheng-nan & He, Hai & Cao, Wen-ping & Zhao, Yu-ting & Zhou, Wei & Gu, Hong & Sun, Hui, 2020. "Adaptive time division power dispatch based on numerical characteristics of net loads," Energy, Elsevier, vol. 205(C).
    24. Dong, Jin & Olama, Mohammed M. & Kuruganti, Teja & Melin, Alexander M. & Djouadi, Seddik M. & Zhang, Yichen & Xue, Yaosuo, 2020. "Novel stochastic methods to predict short-term solar radiation and photovoltaic power," Renewable Energy, Elsevier, vol. 145(C), pages 333-346.
    25. Xu, Fangyuan & Chen, Xujie & Zhang, Miao & Zhou, Ya & Cai, Yanpeng & Zhou, Yang & Tang, Ruixin & Wang, Yifei, 2020. "A sharing economy market system for private EV parking with consideration of demand side management," Energy, Elsevier, vol. 190(C).
    26. Barbieri, Florian & Rajakaruna, Sumedha & Ghosh, Arindam, 2017. "Very short-term photovoltaic power forecasting with cloud modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 242-263.
    27. Wang, Kejun & Qi, Xiaoxia & Liu, Hongda, 2019. "A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    28. VanDeventer, William & Jamei, Elmira & Thirunavukkarasu, Gokul Sidarth & Seyedmahmoudian, Mehdi & Soon, Tey Kok & Horan, Ben & Mekhilef, Saad & Stojcevski, Alex, 2019. "Short-term PV power forecasting using hybrid GASVM technique," Renewable Energy, Elsevier, vol. 140(C), pages 367-379.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shimi Sudha Letha & Math H. J. Bollen & Tatiano Busatto & Angela Espin Delgado & Enock Mulenga & Hamed Bakhtiari & Jil Sutaria & Kazi Main Uddin Ahmed & Naser Nakhodchi & Selçuk Sakar & Vineetha Ravin, 2023. "Power Quality Issues of Electro-Mobility on Distribution Network—An Overview," Energies, MDPI, vol. 16(13), pages 1-21, June.
    2. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    3. Ye He & Siming Guo & Yu Wang & Yujia Zhao & Weidong Zhu & Fangyuan Xu & Chun Sing Lai & Ahmed F. Zobaa, 2022. "An Agent-Based Bidding Simulation Framework to Recognize Monopoly Behavior in Power Markets," Energies, MDPI, vol. 16(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    2. Korkmaz, Deniz, 2021. "SolarNet: A hybrid reliable model based on convolutional neural network and variational mode decomposition for hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 300(C).
    3. Khan, Zulfiqar Ahmad & Hussain, Tanveer & Baik, Sung Wook, 2023. "Dual stream network with attention mechanism for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 338(C).
    4. Zhen, Hao & Niu, Dongxiao & Wang, Keke & Shi, Yucheng & Ji, Zhengsen & Xu, Xiaomin, 2021. "Photovoltaic power forecasting based on GA improved Bi-LSTM in microgrid without meteorological information," Energy, Elsevier, vol. 231(C).
    5. Medine Colak & Mehmet Yesilbudak & Ramazan Bayindir, 2020. "Daily Photovoltaic Power Prediction Enhanced by Hybrid GWO-MLP, ALO-MLP and WOA-MLP Models Using Meteorological Information," Energies, MDPI, vol. 13(4), pages 1-19, February.
    6. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    7. Li, Qing & Zhang, Xinyan & Ma, Tianjiao & Jiao, Chunlei & Wang, Heng & Hu, Wei, 2021. "A multi-step ahead photovoltaic power prediction model based on similar day, enhanced colliding bodies optimization, variational mode decomposition, and deep extreme learning machine," Energy, Elsevier, vol. 224(C).
    8. Wang, Jianzhou & Zhou, Yilin & Li, Zhiwu, 2022. "Hour-ahead photovoltaic generation forecasting method based on machine learning and multi objective optimization algorithm," Applied Energy, Elsevier, vol. 312(C).
    9. Tang, Yugui & Yang, Kuo & Zhang, Shujing & Zhang, Zhen, 2022. "Photovoltaic power forecasting: A hybrid deep learning model incorporating transfer learning strategy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Li, Chengdong & Zhou, Changgeng & Peng, Wei & Lv, Yisheng & Luo, Xin, 2020. "Accurate prediction of short-term photovoltaic power generation via a novel double-input-rule-modules stacked deep fuzzy method," Energy, Elsevier, vol. 212(C).
    11. Wang, Xiaoyang & Sun, Yunlin & Luo, Duo & Peng, Jinqing, 2022. "Comparative study of machine learning approaches for predicting short-term photovoltaic power output based on weather type classification," Energy, Elsevier, vol. 240(C).
    12. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Hu, Zehuan & Gao, Yuan & Ji, Siyu & Mae, Masayuki & Imaizumi, Taiji, 2024. "Improved multistep ahead photovoltaic power prediction model based on LSTM and self-attention with weather forecast data," Applied Energy, Elsevier, vol. 359(C).
    14. Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
    15. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    16. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
    17. Li, Fengyun & Zheng, Haofeng & Li, Xingmei, 2022. "A novel hybrid model for multi-step ahead photovoltaic power prediction based on conditional time series generative adversarial networks," Renewable Energy, Elsevier, vol. 199(C), pages 560-586.
    18. Wu, Thomas & Hu, Ruifeng & Zhu, Hongyu & Jiang, Meihui & Lv, Kunye & Dong, Yunxuan & Zhang, Dongdong, 2024. "Combined IXGBoost-KELM short-term photovoltaic power prediction model based on multidimensional similar day clustering and dual decomposition," Energy, Elsevier, vol. 288(C).
    19. Yuan An & Kaikai Dang & Xiaoyu Shi & Rong Jia & Kai Zhang & Qiang Huang, 2021. "A Probabilistic Ensemble Prediction Method for PV Power in the Nonstationary Period," Energies, MDPI, vol. 14(4), pages 1-18, February.
    20. Seung Chan Jo & Young Gyu Jin & Yong Tae Yoon & Ho Chan Kim, 2021. "Methods for Integrating Extraterrestrial Radiation into Neural Network Models for Day-Ahead PV Generation Forecasting," Energies, MDPI, vol. 14(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:223:y:2021:i:c:s0360544220328553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.