IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4371-d597618.html
   My bibliography  Save this article

Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings

Author

Listed:
  • Piotr Michalak

    (Department of Power Systems and Environmental Protection Facilities, Faculty of Mechanical Engineering and Robotics, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland)

Abstract

In this study, we use the data of Polish typical meteorological years and 15 transposition models to obtain global solar irradiance on sloped surfaces to calculate solar irradiance on external building partitions, solar gains, heating demands, and primary nonrenewable energy for heating and domestic hot water (EP H+W ) of two typical Polish residential buildings, each for two variants in five locations. In relation to TMYs, annual solar gains were lower by −31% and −36% on average in a single and multifamily building, respectively, and the annual heating demands increased by 9% and 16%, respectively. Consequently, averaged EP H+W in relation to TMYs rose by 1.4 kWh/m 2 and 4.5 kWh/m 2 , respectively. The mean differences between TMYs and the new method from the recently published EN-ISO 52010 standard for test Building 1 were 1.6 and 1.2 kWh/m 2 , for Variants 1 and 2, respectively. Similarly, for test Building 2, the mean differences were 5.1 kWh/m 2 and 3.9 kWh/m 2 , respectively. This means that the simulation model that is chosen has a visible impact on a building’s energy performance indicators and its rating without any changes in the physical structure and use of the building.

Suggested Citation

  • Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4371-:d:597618
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4371/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4371/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Badescu, V., 2002. "3D isotropic approximation for solar diffuse irradiance on tilted surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 221-233.
    2. Chwieduk, Dorota A., 2009. "Recommendation on modelling of solar energy incident on a building envelope," Renewable Energy, Elsevier, vol. 34(3), pages 736-741.
    3. Lukas Lundström & Jan Akander & Jesús Zambrano, 2019. "Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate," Energies, MDPI, vol. 12(3), pages 1-27, February.
    4. Iglinski, Bartlomiej & Kujawski, Wojciech & Buczkowski, Roman & Cichosz, Marcin, 2010. "Renewable energy in the Kujawsko-Pomorskie Voivodeship (Poland)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1336-1341, May.
    5. Fokaides, Paris A. & Polycarpou, Kyriacos & Kalogirou, Soteris, 2017. "The impact of the implementation of the European Energy Performance of Buildings Directive on the European building stock: The case of the Cyprus Land Development Corporation," Energy Policy, Elsevier, vol. 111(C), pages 1-8.
    6. Stefan Nowak, 2009. "Management Of Heat Energy Consumption In Poland For The Purpose Of Buildings' Heating And Preparation Of Useable, Hot Water.," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(11), pages 1-33.
    7. Dorota Chwieduk & Michał Chwieduk, 2020. "Determination of the Energy Performance of a Solar Low Energy House with Regard to Aspects of Energy Efficiency and Smartness of the House," Energies, MDPI, vol. 13(12), pages 1-18, June.
    8. Danandeh, M.A. & Mousavi G., S.M., 2018. "Solar irradiance estimation models and optimum tilt angle approaches: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 319-330.
    9. Alex Gonzalez Caceres & Muriel Diaz, 2018. "Usability of the EPC Tools for the Profitability Calculation of a Retrofitting in a Residential Building," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    10. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    11. Joanna Hałacz & Aldona Skotnicka-Siepsiak & Maciej Neugebauer, 2020. "Assessment of Reducing Pollutant Emissions in Selected Heating and Ventilation Systems in Single-Family Houses," Energies, MDPI, vol. 13(5), pages 1-19, March.
    12. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    13. Igliński, Bartłomiej & Buczkowski, Roman & Cichosz, Marcin & Piechota, Grzegorz & Kujawski, Wojciech & Plaskacz, Marta, 2013. "Renewable energy production in the Zachodniopomorskie Voivodeship (Poland)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 768-777.
    14. Mehreen Gul & Yash Kotak & Tariq Muneer & Stoyanka Ivanova, 2018. "Enhancement of Albedo for Solar Energy Gain with Particular Emphasis on Overcast Skies," Energies, MDPI, vol. 11(11), pages 1-17, October.
    15. de Ayala, Amaia & Galarraga, Ibon & Spadaro, Joseph V., 2016. "The price of energy efficiency in the Spanish housing market," Energy Policy, Elsevier, vol. 94(C), pages 16-24.
    16. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    17. de Simón-Martín, Miguel & Alonso-Tristán, Cristina & Díez-Mediavilla, Montserrat, 2017. "Diffuse solar irradiance estimation on building's façades: Review, classification and benchmarking of 30 models under all sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 783-802.
    18. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    19. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
    20. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    21. Kulesza, Kinga, 2017. "Comparison of typical meteorological year and multi-year time series of solar conditions for Belsk, central Poland," Renewable Energy, Elsevier, vol. 113(C), pages 1135-1140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Michalak, 2022. "Hourly Simulation of an Earth-to-Air Heat Exchanger in a Low-Energy Residential Building," Energies, MDPI, vol. 15(5), pages 1-23, March.
    2. Irena Balog & Giampaolo Caputo & Domenico Iatauro & Paolo Signoretti & Francesco Spinelli, 2023. "Downscaling of Hourly Climate Data for the Assessment of Building Energy Performance," Sustainability, MDPI, vol. 15(3), pages 1-14, February.
    3. Serena Summa & Giada Remia & Ambra Sebastianelli & Gianluca Coccia & Costanzo Di Perna, 2022. "Impact on Thermal Energy Needs Caused by the Use of Different Solar Irradiance Decomposition and Transposition Models: Application of EN ISO 52016-1 and EN ISO 52010-1 Standards for Five European Citi," Energies, MDPI, vol. 15(23), pages 1-18, November.
    4. Piotr Michalak, 2022. "Thermal Network Model for an Assessment of Summer Indoor Comfort in a Naturally Ventilated Residential Building," Energies, MDPI, vol. 15(10), pages 1-19, May.
    5. Piotr Michalak, 2022. "Impact of Air Density Variation on a Simulated Earth-to-Air Heat Exchanger’s Performance," Energies, MDPI, vol. 15(9), pages 1-24, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    2. Dengchang Ma & Guobing Pan & Fang Xu & Hongfei Sun, 2021. "Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System Feasibility," Energies, MDPI, vol. 14(10), pages 1-16, May.
    3. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.
    4. Moretón, R. & Lorenzo, E. & Pinto, A. & Muñoz, J. & Narvarte, L., 2017. "From broadband horizontal to effective in-plane irradiation: A review of modelling and derived uncertainty for PV yield prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 886-903.
    5. Zhiyong Tian & Bengt Perers & Simon Furbo & Jianhua Fan & Jie Deng & Janne Dragsted, 2018. "A Comprehensive Approach for Modelling Horizontal Diffuse Radiation, Direct Normal Irradiance and Total Tilted Solar Radiation Based on Global Radiation under Danish Climate Conditions," Energies, MDPI, vol. 11(5), pages 1-19, May.
    6. Torres, José Luis & García, Ignacio, 2021. "Analytical expressions for estimating sky diffuse irradiance and illuminance on tilted planes for the CIE Standard General Skies," Renewable Energy, Elsevier, vol. 174(C), pages 320-335.
    7. Igliński, Bartłomiej & Iglińska, Anna & Koziński, Grzegorz & Skrzatek, Mateusz & Buczkowski, Roman, 2016. "Wind energy in Poland – History, current state, surveys, Renewable Energy Sources Act, SWOT analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 19-33.
    8. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    9. Turgut Karahüseyin & Serkan Abbasoğlu, 2022. "Performance Loss Rates of a 1 MWp PV Plant with Various Tilt Angle, Orientation and Installed Environment in the Capital of Cyprus," Sustainability, MDPI, vol. 14(15), pages 1-23, July.
    10. Zhang, Kai & Wang, Dajiang & Chen, Min & Zhu, Rui & Zhang, Fan & Zhong, Teng & Qian, Zhen & Wang, Yazhou & Li, Hengyue & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2024. "Power generation assessment of photovoltaic noise barriers across 52 major Chinese cities," Applied Energy, Elsevier, vol. 361(C).
    11. Piotr Olczak, 2022. "Energy Productivity of Microinverter Photovoltaic Microinstallation: Comparison of Simulation and Measured Results—Poland Case Study," Energies, MDPI, vol. 15(20), pages 1-14, October.
    12. Nicolás-Martín, Carolina & Santos-Martín, David & Chinchilla-Sánchez, Mónica & Lemon, Scott, 2020. "A global annual optimum tilt angle model for photovoltaic generation to use in the absence of local meteorological data," Renewable Energy, Elsevier, vol. 161(C), pages 722-735.
    13. Piotr Michalak & Krzysztof Szczotka & Jakub Szymiczek, 2021. "Energy Effectiveness or Economic Profitability? A Case Study of Thermal Modernization of a School Building," Energies, MDPI, vol. 14(7), pages 1-21, April.
    14. Quan, Hao & Yang, Dazhi, 2020. "Probabilistic solar irradiance transposition models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    15. Barbón, A. & Ayuso, P. Fortuny & Bayón, L. & Silva, C.A., 2021. "A comparative study between racking systems for photovoltaic power systems," Renewable Energy, Elsevier, vol. 180(C), pages 424-437.
    16. Seyed Abbas Mousavi Maleki & H. Hizam & Chandima Gomes, 2017. "Estimation of Hourly, Daily and Monthly Global Solar Radiation on Inclined Surfaces: Models Re-Visited," Energies, MDPI, vol. 10(1), pages 1-28, January.
    17. Ceballos-Fuentealba, Irlanda & Álvarez-Miranda, Eduardo & Torres-Fuchslocher, Carlos & del Campo-Hitschfeld, María Luisa & Díaz-Guerrero, John, 2019. "A simulation and optimisation methodology for choosing energy efficiency measures in non-residential buildings," Applied Energy, Elsevier, vol. 256(C).
    18. Igliński, Bartłomiej & Pietrzak, Michał Bernard & Kiełkowska, Urszula & Skrzatek, Mateusz & Kumar, Gopalakrishnan & Piechota, Grzegorz, 2022. "The assessment of renewable energy in Poland on the background of the world renewable energy sector," Energy, Elsevier, vol. 261(PB).
    19. Lukač, Niko & Seme, Sebastijan & Žlaus, Danijel & Štumberger, Gorazd & Žalik, Borut, 2014. "Buildings roofs photovoltaic potential assessment based on LiDAR (Light Detection And Ranging) data," Energy, Elsevier, vol. 66(C), pages 598-609.
    20. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4371-:d:597618. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.