IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2893-d556393.html
   My bibliography  Save this article

Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System Feasibility

Author

Listed:
  • Dengchang Ma

    (The Institute of Distributed Energy and Microgrid, Zhejiang University of Technology, Hangzhou 310013, China
    The College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China)

  • Guobing Pan

    (The Institute of Distributed Energy and Microgrid, Zhejiang University of Technology, Hangzhou 310013, China)

  • Fang Xu

    (The Institute of Distributed Energy and Microgrid, Zhejiang University of Technology, Hangzhou 310013, China)

  • Hongfei Sun

    (The Institute of Distributed Energy and Microgrid, Zhejiang University of Technology, Hangzhou 310013, China)

Abstract

The meteorological environment is a determining factor in photovoltaic (PV) system feasibility (PVSF). To evaluate this impact more accurately, a quantitative analysis model based on multimeteorological factors and the Random Forest Regression model is proposed in this work. Firstly, an evaluation system is established to assess the impact. Then, to predict the indicators of the evaluation system, a parameter, i.e., performance ratio in sampling period, is defined. Secondly, a set of essential influences on the performance ratio in the sampling period is established through analyzing and reducing the discovered influences on the PV system performance. Finally, data from the Desert Knowledge Australia Solar Centre (DKASC) website are used to conduct the experiment. During the experiment, the sample set is cleaned using the model based on the cosine of the zenith angle. The functional relationship between the performance ratio in the sampling period and its essential influences is established through training a Random Forest Regression model with the data of the modeling system. The data of the test system are used to verify the forecast performance of the proposed model. Compared with the reference model, which is based on the traditional physical experiment, the results of the proposed model accord better with the measured values.

Suggested Citation

  • Dengchang Ma & Guobing Pan & Fang Xu & Hongfei Sun, 2021. "Quantitative Analysis of the Impact of Meteorological Environment on Photovoltaic System Feasibility," Energies, MDPI, vol. 14(10), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2893-:d:556393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2893/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2893/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Badescu, V., 2002. "3D isotropic approximation for solar diffuse irradiance on tilted surfaces," Renewable Energy, Elsevier, vol. 26(2), pages 221-233.
    2. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    3. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    4. Beattie, Neil S. & Moir, Robert S. & Chacko, Charlslee & Buffoni, Giorgio & Roberts, Simon H. & Pearsall, Nicola M., 2012. "Understanding the effects of sand and dust accumulation on photovoltaic modules," Renewable Energy, Elsevier, vol. 48(C), pages 448-452.
    5. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    6. Benali, L. & Notton, G. & Fouilloy, A. & Voyant, C. & Dizene, R., 2019. "Solar radiation forecasting using artificial neural network and random forest methods: Application to normal beam, horizontal diffuse and global components," Renewable Energy, Elsevier, vol. 132(C), pages 871-884.
    7. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    8. Kalogirou, Soteris A. & Agathokleous, Rafaela & Panayiotou, Gregoris, 2013. "On-site PV characterization and the effect of soiling on their performance," Energy, Elsevier, vol. 51(C), pages 439-446.
    9. Wattan, Rungrat & Janjai, Serm, 2016. "An investigation of the performance of 14 models for estimating hourly diffuse irradiation on inclined surfaces at tropical sites," Renewable Energy, Elsevier, vol. 93(C), pages 667-674.
    10. Khalil, Samy A. & Shaffie, A.M., 2016. "Evaluation of transposition models of solar irradiance over Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 105-119.
    11. Khalil, Samy A. & Shaffie, A.M., 2013. "A comparative study of total, direct and diffuse solar irradiance by using different models on horizontal and inclined surfaces for Cairo, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 853-863.
    12. Teo, H.G. & Lee, P.S. & Hawlader, M.N.A., 2012. "An active cooling system for photovoltaic modules," Applied Energy, Elsevier, vol. 90(1), pages 309-315.
    13. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    14. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nalini Dookie & Xsitaaz T. Chadee & Ricardo M. Clarke, 2022. "A Prefeasibility Solar Photovoltaic Tool for Tropical Small Island Developing States," Energies, MDPI, vol. 15(22), pages 1-28, November.
    2. Alfredo Nespoli & Andrea Matteri & Silvia Pretto & Luca De Ciechi & Emanuele Ogliari, 2021. "Battery Sizing for Different Loads and RES Production Scenarios through Unsupervised Clustering Methods," Forecasting, MDPI, vol. 3(4), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    2. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    3. Riyad Mubarak & Martin Hofmann & Stefan Riechelmann & Gunther Seckmeyer, 2017. "Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-18, October.
    4. Hasan, Ahmed & Sarwar, Jawad & Shah, Ali Hasan, 2018. "Concentrated photovoltaic: A review of thermal aspects, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 835-852.
    5. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    6. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.
    7. de Simón-Martín, Miguel & Alonso-Tristán, Cristina & Díez-Mediavilla, Montserrat, 2017. "Diffuse solar irradiance estimation on building's façades: Review, classification and benchmarking of 30 models under all sky conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 783-802.
    8. Su-Chang Lim & Jun-Ho Huh & Seok-Hoon Hong & Chul-Young Park & Jong-Chan Kim, 2022. "Solar Power Forecasting Using CNN-LSTM Hybrid Model," Energies, MDPI, vol. 15(21), pages 1-17, November.
    9. Moretón, R. & Lorenzo, E. & Pinto, A. & Muñoz, J. & Narvarte, L., 2017. "From broadband horizontal to effective in-plane irradiation: A review of modelling and derived uncertainty for PV yield prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 886-903.
    10. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    11. Aritra Ghosh, 2020. "Soiling Losses: A Barrier for India’s Energy Security Dependency from Photovoltaic Power," Challenges, MDPI, vol. 11(1), pages 1-22, May.
    12. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).
    13. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    14. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparison of empirical models to estimate monthly mean diffuse solar radiation from measured data: Case study for humid-subtropical climatic region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1326-1342.
    15. Fan, Siyuan & Wang, Yu & Cao, Shengxian & Zhao, Bo & Sun, Tianyi & Liu, Peng, 2022. "A deep residual neural network identification method for uneven dust accumulation on photovoltaic (PV) panels," Energy, Elsevier, vol. 239(PD).
    16. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    17. Siripat Somchit & Palamy Thongbouasy & Chitchai Srithapon & Rongrit Chatthaworn, 2023. "Optimal Transmission Expansion Planning with Long-Term Solar Photovoltaic Generation Forecast," Energies, MDPI, vol. 16(4), pages 1-17, February.
    18. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    19. Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
    20. Feng, Lan & Lin, Aiwen & Wang, Lunche & Qin, Wenmin & Gong, Wei, 2018. "Evaluation of sunshine-based models for predicting diffuse solar radiation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 168-182.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2893-:d:556393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.