IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1135-1140.html
   My bibliography  Save this article

Comparison of typical meteorological year and multi-year time series of solar conditions for Belsk, central Poland

Author

Listed:
  • Kulesza, Kinga

Abstract

The deployment of solar energy projects in a given region requires a precise estimation of potential solar resources. For that purpose, generating a typical meteorological year is of great importance, although in principle it is a tool used in construction or engineering. Various methods for deriving typical meteorological years have been developed, but their final results can be significantly different. In this paper, two major methodologies (TMY3 method and ISO 15927-4 standard) were applied to 12-year measured data series recorded during the period 2003–2014 in Belsk, central Poland. The sums of global solar radiation obtained in typical meteorological years were compared to the long-term average measured sums of global solar radiation in order to decide which method can be recommended as best reflecting solar conditions in Poland. According to this study, the differences between the respective TMY data sets and long-term measured data set (measured with percentage root mean square error – %RMSE) are bigger than 5%. ISO 15927-4 standard slightly better approximates solar conditions in central Poland than TMY3 method – the %RMSE equals 5.25% and 6.71% respectively.

Suggested Citation

  • Kulesza, Kinga, 2017. "Comparison of typical meteorological year and multi-year time series of solar conditions for Belsk, central Poland," Renewable Energy, Elsevier, vol. 113(C), pages 1135-1140.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1135-1140
    DOI: 10.1016/j.renene.2017.06.087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117305918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhou, Jin & Wu, Yezheng & Yan, Gang, 2006. "Generation of typical solar radiation year for China," Renewable Energy, Elsevier, vol. 31(12), pages 1972-1985.
    2. Jiang, Yingni, 2010. "Generation of typical meteorological year for different climates of China," Energy, Elsevier, vol. 35(5), pages 1946-1953.
    3. Bulut, Hüsamettin, 2004. "Typical solar radiation year for southeastern Anatolia," Renewable Energy, Elsevier, vol. 29(9), pages 1477-1488.
    4. Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.
    5. Janjai, S. & Deeyai, P., 2009. "Comparison of methods for generating typical meteorological year using meteorological data from a tropical environment," Applied Energy, Elsevier, vol. 86(4), pages 528-537, April.
    6. Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
    7. Ohunakin, Olayinka S. & Adaramola, Muyiwa S. & Oyewola, Olanrewaju M. & Fagbenle, Richard O., 2013. "Generation of a typical meteorological year for north–east, Nigeria," Applied Energy, Elsevier, vol. 112(C), pages 152-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    2. Tsung-En Hsieh & Bianca Fraincas & Keh-Chin Chang, 2023. "Generation of a Typical Meteorological Year for Global Solar Radiation in Taiwan," Energies, MDPI, vol. 16(7), pages 1-13, March.
    3. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    4. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    5. Abreu, Edgar F.M. & Canhoto, Paulo & Prior, Victor & Melicio, R., 2018. "Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements," Renewable Energy, Elsevier, vol. 127(C), pages 398-411.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oluwaseu Kilanko & Sunday O Oyedepo & Joseph O Dirisu & Richard O Leramo & Philip Babalola & Abraham K Aworinde & Mfon Udo & Alexander M Okonkwo & Marvelous I Akomolafe, 2023. "Typical meteorological year data analysis for optimal usage of energy systems at six selected locations in Nigeria," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 637-658.
    2. Haixiang Zang & Miaomiao Wang & Jing Huang & Zhinong Wei & Guoqiang Sun, 2016. "A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China," Energies, MDPI, vol. 9(12), pages 1-19, December.
    3. Vincenzo Costanzo & Gianpiero Evola & Marco Infantone & Luigi Marletta, 2020. "Updated Typical Weather Years for the Energy Simulation of Buildings in Mediterranean Climate. A Case Study for Sicily," Energies, MDPI, vol. 13(16), pages 1-24, August.
    4. Pusat, Saban & Ekmekçi, İsmail & Akkoyunlu, Mustafa Tahir, 2015. "Generation of typical meteorological year for different climates of Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 144-151.
    5. Fan, Xinying, 2022. "A method for the generation of typical meteorological year data using ensemble empirical mode decomposition for different climates of China and performance comparison analysis," Energy, Elsevier, vol. 240(C).
    6. Abreu, Edgar F.M. & Canhoto, Paulo & Prior, Victor & Melicio, R., 2018. "Solar resource assessment through long-term statistical analysis and typical data generation with different time resolutions using GHI measurements," Renewable Energy, Elsevier, vol. 127(C), pages 398-411.
    7. Chan, A.L.S., 2016. "Generation of typical meteorological years using genetic algorithm for different energy systems," Renewable Energy, Elsevier, vol. 90(C), pages 1-13.
    8. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    9. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    10. Huang, Kuo-Tsang, 2020. "Identifying a suitable hourly solar diffuse fraction model to generate the typical meteorological year for building energy simulation application," Renewable Energy, Elsevier, vol. 157(C), pages 1102-1115.
    11. Cui, Ying & Yan, Da & Hong, Tianzhen & Xiao, Chan & Luo, Xuan & Zhang, Qi, 2017. "Comparison of typical year and multiyear building simulations using a 55-year actual weather data set from China," Applied Energy, Elsevier, vol. 195(C), pages 890-904.
    12. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    13. Zhang, Wenhao & Li, Honglian & Wang, Mengli & Lv, Wen & Huang, Jin & Yang, Liu, 2024. "Enhancing typical Meteorological Year generation for diverse energy systems: A hybrid Sandia-machine learning approach," Renewable Energy, Elsevier, vol. 225(C).
    14. Carra, Elena & Ballestrín, Jesús & Polo, Jesús & Barbero, Javier & Fernández-Reche, Jesús, 2018. "Atmospheric extinction levels of solar radiation at Plataforma Solar de Almería. Application to solar thermal electric plants," Energy, Elsevier, vol. 145(C), pages 400-407.
    15. Li, Honglian & Yang, Yi & Lv, Kailin & Liu, Jing & Yang, Liu, 2020. "Compare several methods of select typical meteorological year for building energy simulation in China," Energy, Elsevier, vol. 209(C).
    16. Zang, Haixiang & Xu, Qingshan & Bian, Haihong, 2012. "Generation of typical solar radiation data for different climates of China," Energy, Elsevier, vol. 38(1), pages 236-248.
    17. Xinying Fan & Bin Chen & Changfeng Fu & Lingyun Li, 2020. "Research on the Influence of Abrupt Climate Changes on the Analysis of Typical Meteorological Year in China," Energies, MDPI, vol. 13(24), pages 1-16, December.
    18. Ohunakin, Olayinka S. & Adaramola, Muyiwa S. & Oyewola, Olanrewaju M. & Fagbenle, Richard O., 2013. "Generation of a typical meteorological year for north–east, Nigeria," Applied Energy, Elsevier, vol. 112(C), pages 152-159.
    19. Sun, Jingting & Li, Zhengrong & Xiao, Fu & Xiao, Jianzhuang, 2020. "Generation of typical meteorological year for integrated climate based daylight modeling and building energy simulation," Renewable Energy, Elsevier, vol. 160(C), pages 721-729.
    20. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1135-1140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.